|
from typing import Dict, Any, List, Generator |
|
import torch |
|
import os |
|
import logging |
|
from s2s_pipeline import main, prepare_all_args, get_default_arguments, setup_logger, initialize_queues_and_events, build_pipeline |
|
import numpy as np |
|
from queue import Queue, Empty |
|
import threading |
|
import base64 |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
( |
|
self.module_kwargs, |
|
self.socket_receiver_kwargs, |
|
self.socket_sender_kwargs, |
|
self.vad_handler_kwargs, |
|
self.whisper_stt_handler_kwargs, |
|
self.paraformer_stt_handler_kwargs, |
|
self.language_model_handler_kwargs, |
|
self.mlx_language_model_handler_kwargs, |
|
self.parler_tts_handler_kwargs, |
|
self.melo_tts_handler_kwargs, |
|
self.chat_tts_handler_kwargs, |
|
) = get_default_arguments(mode='none', lm_model_name='meta-llama/Meta-Llama-3.1-8B-Instruct', log_level='DEBUG') |
|
setup_logger(self.module_kwargs.log_level) |
|
|
|
prepare_all_args( |
|
self.module_kwargs, |
|
self.whisper_stt_handler_kwargs, |
|
self.paraformer_stt_handler_kwargs, |
|
self.language_model_handler_kwargs, |
|
self.mlx_language_model_handler_kwargs, |
|
self.parler_tts_handler_kwargs, |
|
self.melo_tts_handler_kwargs, |
|
self.chat_tts_handler_kwargs, |
|
) |
|
|
|
self.queues_and_events = initialize_queues_and_events() |
|
|
|
self.pipeline_manager = build_pipeline( |
|
self.module_kwargs, |
|
self.socket_receiver_kwargs, |
|
self.socket_sender_kwargs, |
|
self.vad_handler_kwargs, |
|
self.whisper_stt_handler_kwargs, |
|
self.paraformer_stt_handler_kwargs, |
|
self.language_model_handler_kwargs, |
|
self.mlx_language_model_handler_kwargs, |
|
self.parler_tts_handler_kwargs, |
|
self.melo_tts_handler_kwargs, |
|
self.chat_tts_handler_kwargs, |
|
self.queues_and_events, |
|
) |
|
|
|
self.pipeline_manager.start() |
|
|
|
|
|
self.final_output_queue = Queue() |
|
|
|
def _collect_output(self): |
|
while True: |
|
try: |
|
output = self.queues_and_events['send_audio_chunks_queue'].get(timeout=5) |
|
if isinstance(output, (str, bytes)) and output in (b"END", "END"): |
|
self.final_output_queue.put("END") |
|
break |
|
elif isinstance(output, np.ndarray): |
|
self.final_output_queue.put(output.tobytes()) |
|
else: |
|
self.final_output_queue.put(output) |
|
except Empty: |
|
|
|
self.final_output_queue.put("END") |
|
break |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Generator[Dict[str, Any], None, None]: |
|
""" |
|
Args: |
|
data (Dict[str, Any]): The input data containing the necessary arguments. |
|
|
|
Returns: |
|
Generator[Dict[str, Any], None, None]: A generator yielding output chunks from the model or pipeline. |
|
""" |
|
|
|
self.output_collector_thread = threading.Thread(target=self._collect_output) |
|
self.output_collector_thread.start() |
|
|
|
input_type = data.get("input_type", "text") |
|
input_data = data.get("inputs", "") |
|
|
|
if input_type == "speech": |
|
|
|
audio_array = np.frombuffer(input_data, dtype=np.int16) |
|
|
|
|
|
self.queues_and_events['recv_audio_chunks_queue'].put(audio_array.tobytes()) |
|
elif input_type == "text": |
|
|
|
self.queues_and_events['text_prompt_queue'].put(input_data) |
|
else: |
|
raise ValueError(f"Unsupported input type: {input_type}") |
|
|
|
|
|
output_chunks = [] |
|
while True: |
|
chunk = self.final_output_queue.get() |
|
if chunk == "END": |
|
break |
|
output_chunks.append(chunk) |
|
|
|
|
|
combined_audio = b''.join(output_chunks) |
|
|
|
|
|
base64_audio = base64.b64encode(combined_audio).decode('utf-8') |
|
|
|
return {"output": base64_audio} |
|
|
|
def cleanup(self): |
|
|
|
self.pipeline_manager.stop() |
|
|
|
|
|
self.queues_and_events['send_audio_chunks_queue'].put(b"END") |
|
self.output_collector_thread.join() |