Edit model card

vit-base-brain-mri

This model is a fine-tuned version of google/vit-base-patch16-224 on the BrainMRI dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0577
  • Accuracy: 0.5990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 72 0.9986 0.6098
1.098 2.0 144 0.8445 0.7003
0.7895 3.0 216 0.7318 0.7526
0.7895 4.0 288 0.6842 0.7474
0.6629 5.0 360 0.6328 0.7857
0.5966 6.0 432 0.5957 0.8101
0.5546 7.0 504 0.5646 0.8118
0.5546 8.0 576 0.5647 0.8049
0.5113 9.0 648 0.5340 0.8275
0.4882 10.0 720 0.5190 0.8328
0.4882 11.0 792 0.5197 0.8328
0.4789 12.0 864 0.5002 0.8258
0.4582 13.0 936 0.4957 0.8310
0.4426 14.0 1008 0.4821 0.8310
0.4426 15.0 1080 0.4706 0.8467
0.4328 16.0 1152 0.4821 0.8153
0.432 17.0 1224 0.4992 0.8275
0.432 18.0 1296 0.4799 0.8345
0.4196 19.0 1368 0.4838 0.8310
0.4287 20.0 1440 0.4598 0.8659

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for andrei-teodor/vit-base-brain-mri

Finetuned
(502)
this model