Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Wav2Vec2-Large-XLSR-53


language: gl datasets: - OpenSLR 77 metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Galician Wav2Vec2-Large-XLSR-53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR type: openslr args: gl metrics: - name: Test WER type: wer value: 16.79

Wav2Vec2-Large-XLSR-53-galician

Fine-tuned facebook/wav2vec2-large-xlsr-53 on galician using the OpenSLR dataset

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "gl", split="test[:2%]")  # This is not available yet, load OpenSLR or your dataset instead

processor = Wav2Vec2Processor.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
model = Wav2Vec2ForCTC.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
   speech_array, sampling_rate = torchaudio.load(batch["path"])
   batch["speech"] = resampler(speech_array).squeeze().numpy()
   return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
  logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Galician test data of Common Voice (when it is released).

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "gl", split="test")   # This is not available yet, load OpenSLR or your dataset instead
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
model = Wav2Vec2ForCTC.from_pretrained("diego-fustes/wav2vec2-large-xlsr-gl")
model.to("cuda")

chars_to_ignore_regex = '[^a-záéíóúñ ]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

  with torch.no_grad():
    logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
  
  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_strings"] = processor.batch_decode(pred_ids)
  return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 16.79 % on OpenSLR split

Training

The OpenSLR SLR77 dataset was used for training and validation. The dataset was split as 70% for training, 15% for validation and 15% for testing

The script used for training can be found here

Downloads last month
35
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.