SentenceTransformer based on google-bert/bert-base-multilingual-cased
This is a sentence-transformers model finetuned from google-bert/bert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("anhtuansh/bert-base-multilingual-Financial-Matryoshka-2-v2")
sentences = [
'Thẩm định nội dung điều chỉnh báo cáo nghiên cứu khả thi, quyết định phê duyệt điều chỉnh dự án PPP do nhà đầu tư đề xuất có thể nộp hồ sơ Trực tiếp',
'Thẩm định nội dung điều chỉnh báo cáo nghiên cứu khả thi, quyết định phê duyệt điều chỉnh dự án PPP do nhà đầu tư đề xuất có cách thức nộp hồ sơ như thế nào? ',
'Tiếp tục hưởng trợ cấp thất nghiệp do cấp nào thực hiện? ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1001 |
cosine_accuracy@3 |
0.2904 |
cosine_accuracy@5 |
0.4779 |
cosine_accuracy@10 |
0.951 |
cosine_precision@1 |
0.1001 |
cosine_precision@3 |
0.0968 |
cosine_precision@5 |
0.0956 |
cosine_precision@10 |
0.0951 |
cosine_recall@1 |
0.1001 |
cosine_recall@3 |
0.2904 |
cosine_recall@5 |
0.4779 |
cosine_recall@10 |
0.951 |
cosine_ndcg@10 |
0.4352 |
cosine_mrr@10 |
0.2826 |
cosine_map@100 |
0.2844 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1005 |
cosine_accuracy@3 |
0.2899 |
cosine_accuracy@5 |
0.483 |
cosine_accuracy@10 |
0.9526 |
cosine_precision@1 |
0.1005 |
cosine_precision@3 |
0.0966 |
cosine_precision@5 |
0.0966 |
cosine_precision@10 |
0.0953 |
cosine_recall@1 |
0.1005 |
cosine_recall@3 |
0.2899 |
cosine_recall@5 |
0.483 |
cosine_recall@10 |
0.9526 |
cosine_ndcg@10 |
0.4368 |
cosine_mrr@10 |
0.284 |
cosine_map@100 |
0.2858 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0993 |
cosine_accuracy@3 |
0.2883 |
cosine_accuracy@5 |
0.4743 |
cosine_accuracy@10 |
0.9554 |
cosine_precision@1 |
0.0993 |
cosine_precision@3 |
0.0961 |
cosine_precision@5 |
0.0949 |
cosine_precision@10 |
0.0955 |
cosine_recall@1 |
0.0993 |
cosine_recall@3 |
0.2883 |
cosine_recall@5 |
0.4743 |
cosine_recall@10 |
0.9554 |
cosine_ndcg@10 |
0.4356 |
cosine_mrr@10 |
0.2819 |
cosine_map@100 |
0.2835 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0978 |
cosine_accuracy@3 |
0.289 |
cosine_accuracy@5 |
0.4753 |
cosine_accuracy@10 |
0.9555 |
cosine_precision@1 |
0.0978 |
cosine_precision@3 |
0.0963 |
cosine_precision@5 |
0.0951 |
cosine_precision@10 |
0.0956 |
cosine_recall@1 |
0.0978 |
cosine_recall@3 |
0.289 |
cosine_recall@5 |
0.4753 |
cosine_recall@10 |
0.9555 |
cosine_ndcg@10 |
0.435 |
cosine_mrr@10 |
0.2811 |
cosine_map@100 |
0.2827 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0955 |
cosine_accuracy@3 |
0.2863 |
cosine_accuracy@5 |
0.4743 |
cosine_accuracy@10 |
0.9552 |
cosine_precision@1 |
0.0955 |
cosine_precision@3 |
0.0954 |
cosine_precision@5 |
0.0949 |
cosine_precision@10 |
0.0955 |
cosine_recall@1 |
0.0955 |
cosine_recall@3 |
0.2863 |
cosine_recall@5 |
0.4743 |
cosine_recall@10 |
0.9552 |
cosine_ndcg@10 |
0.4341 |
cosine_mrr@10 |
0.2799 |
cosine_map@100 |
0.2815 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 181,350 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 10 tokens
- mean: 107.98 tokens
- max: 512 tokens
|
- min: 12 tokens
- mean: 37.24 tokens
- max: 448 tokens
|
- Samples:
positive |
anchor |
Tính tiền cấp quyền khai thác tài nguyên nước đối với công trình chưa vận hành cấp tỉnh có yêu cầu là . |
Tính tiền cấp quyền khai thác tài nguyên nước đối với công trình chưa vận hành cấp tỉnh có yêu cầu gì? |
Xóa đăng ký hành nghề và thu hồi Thẻ công chứng viên trường hợp công chứng viên không còn hành nghề tại tổ chức hành nghề công chứng được thực hiện mức độ trực tuyến Toàn trình |
Xóa đăng ký hành nghề và thu hồi Thẻ công chứng viên trường hợp công chứng viên không còn hành nghề tại tổ chức hành nghề công chứng được thực hiện mức độ mấy? |
Thủ tục cấp giấy chứng nhận đủ điều kiện kinh doanh hoạt động thể thao đối với môn Mô tô nước trên biển có trình tự thực hiện như sau: Doanh nghiệp gửi hồ sơ đến cơ quan chuyên môn về thể dục, thể thao thuộc Ủy ban nhân nhân cấp tỉnh nơi đăng ký địa điểm kinh doanh hoạt động thể thao hoặc nơi doanh nghiệp có trụ sở chính trong trường hợp doanh nghiệp có nhiều địa điểm kinh doanh hoạt động thể thao.Cơ quan chuyên môn về thể dục, thể thao thuộc Ủy ban nhân dân cấp tỉnh (sau đây gọi là cơ quan cấp Giấy chứng nhận đủ điều kiện) cấp cho doanh nghiệp giấy tiếp nhận hồ sơ. Trường hợp hồ sơ cần sửa đổi, bổ sung, cơ quan cấp Giấy chứng nhận đủ điều kiện thông báo trực tiếp hoặc bằng văn bản những nội dung cần sửa đổi, bổ sung đến doanh nghiệp trong thời hạn 03 ngày làm việc, kể từ ngày nhận hồ sơ. |
Thủ tục cấp giấy chứng nhận đủ điều kiện kinh doanh hoạt động thể thao đối với môn Mô tô nước trên biển có trình tự thực hiện như thế nào? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Unnamed Dataset
- Size: 20,150 evaluation samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 15 tokens
- mean: 101.71 tokens
- max: 512 tokens
|
- min: 14 tokens
- mean: 36.81 tokens
- max: 191 tokens
|
- Samples:
positive |
anchor |
Điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ đã ban hành trước ngày 01 tháng 7 năm 2004 có yêu cầu hồ sơ gồm: 1. Hồ sơ do người sử dụng đất nộp 01 bộ tại Sở Tài nguyên và Môi trường gồm:Văn bản đề nghị điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ ban hành trước ngày 01 tháng 7 năm 2004 theo Mẫu số 03 ban hành kèm theo Thông tư 33/2017/TT-BTNMTBản sao quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ đã ban hành trước ngày 01 tháng 7 năm 2004Bản sao giấy chứng nhận quyền sử dụng đất hoặc Giấy chứng nhận quyền sở hữu nhà ở và quyền sử dụng đất ở hoặc Giấy chứng nhận quyền sử dụng đất, quyền sở hữu nhà ở và tài sản khác gắn liền với đất đã cấp (nếu có)Bản sao giấy phép đầu tư hoặc giấy chứng nhận đầu tư hoặc giấy đăng ký kinh doanh hoặc văn bản chấp thuận chủ trương đầu tư hoặc quyết định chủ trương đầu tư hoặc giấy chứng nhận đăng ký đầu tư đã cấp (nếu có)2. Hồ sơ do Sở Tài nguyên và Môi trường lập để trình Ủy ban nhân dân cấp tỉnh gồm:Tờ trình theo Mẫu số 04 ban hành kèm theo Thông tư 33/2017/TT-BTNMTCác giấy tờ do người sử dụng đất nộp tại mục 1 nêu trên;Văn bản của cơ quan có thẩm quyền đối với trường hợp người sử dụng đất không đề nghị điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ;Trích lục bản đồ địa chính thửa đất hoặc trích đo địa chính thửa đất (đã có trong hồ sơ giao đất, cho thuê đất trước đây).3. Hồ sơ thẩm định do Ủy ban nhân dân cấp tỉnh lập gửi Bộ Tài nguyên và Môi trường đối với trường hợp điều chỉnh quyết định mà phải báo cáo Thủ tướng Chính phủ gồm:Tờ trình theo Mẫu số 05 ban hành kèm theo Thông tư 33/2017/TT-BTNMTCác giấy tờ do người sử dụng đất nộp theo quy định tại mục 1 nêu trênVăn bản của cơ quan có thẩm quyền đề nghị điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ (nếu có)Trích lục bản đồ địa chính thửa đất hoặc trích đo địa chính thửa đất (đã có trong hồ sơ giao đất, cho thuê đất trước đây)4. Hồ sơ do Bộ Tài nguyên và Môi trường lập để trình Thủ tướng Chính phủ gồm:Tờ trình Thủ tướng Chính phủCác giấy tờ do Ủy ban nhân dân cấp tỉnh lập theo quy định tại mục 3 nêu trênVăn bản của Bộ, ngành có liên quan góp ý về việc đề nghị điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ đối với dự án phải xin ý kiến các Bộ, ngành (nếu có) |
Điều chỉnh quyết định thu hồi đất, giao đất, cho thuê đất, cho phép chuyển mục đích sử dụng đất của Thủ tướng Chính phủ đã ban hành trước ngày 01 tháng 7 năm 2004 có yêu cầu thành phần hồ sơ những gì? |
Thủ tục thông báo hủy kết quả phong phẩm hoặc suy cử chức sắc đối với các trường hợp quy định tại khoản 2 Điều 33 của Luật tín ngưỡng, tôn giáo được thực hiện mức độ trực tuyến Toàn trình |
Thủ tục thông báo hủy kết quả phong phẩm hoặc suy cử chức sắc đối với các trường hợp quy định tại khoản 2 Điều 33 của Luật tín ngưỡng, tôn giáo được thực hiện mức độ mấy? |
Thủ tục đính chính Giấy chứng nhận đã cấp có phí, lệ phí là: Trực tiếp: |
Thủ tục đính chính Giấy chứng nhận đã cấp có phí, lệ phí là bao nhiêu? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.9994 |
708 |
0.0012 |
0.2727 |
0.2739 |
0.2781 |
0.2744 |
0.2762 |
1.9988 |
1416 |
0.0006 |
0.2827 |
0.2835 |
0.2858 |
0.2815 |
0.2844 |
Framework Versions
- Python: 3.10.10
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}