|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from types import SimpleNamespace |
|
|
|
import torch |
|
import torch.nn as nn |
|
from packaging import version |
|
from safetensors.torch import load_file |
|
|
|
from diffusers.utils.accelerate_utils import apply_forward_hook |
|
|
|
|
|
def nonlinearity(x): |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class SpatialNorm(nn.Module): |
|
def __init__( |
|
self, |
|
f_channels, |
|
zq_channels=None, |
|
norm_layer=nn.GroupNorm, |
|
freeze_norm_layer=False, |
|
add_conv=False, |
|
**norm_layer_params, |
|
): |
|
super().__init__() |
|
self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params) |
|
if zq_channels is not None: |
|
if freeze_norm_layer: |
|
for p in self.norm_layer.parameters: |
|
p.requires_grad = False |
|
self.add_conv = add_conv |
|
if self.add_conv: |
|
self.conv = nn.Conv2d( |
|
zq_channels, zq_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.conv_y = nn.Conv2d( |
|
zq_channels, f_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.conv_b = nn.Conv2d( |
|
zq_channels, f_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, f, zq=None): |
|
norm_f = self.norm_layer(f) |
|
if zq is not None: |
|
f_size = f.shape[-2:] |
|
if ( |
|
version.parse(torch.__version__) < version.parse("2.1") |
|
and zq.dtype == torch.bfloat16 |
|
): |
|
zq = zq.to(dtype=torch.float32) |
|
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest") |
|
zq = zq.to(dtype=torch.bfloat16) |
|
else: |
|
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest") |
|
if self.add_conv: |
|
zq = self.conv(zq) |
|
norm_f = norm_f * self.conv_y(zq) + self.conv_b(zq) |
|
return norm_f |
|
|
|
|
|
def Normalize(in_channels, zq_ch=None, add_conv=None): |
|
return SpatialNorm( |
|
in_channels, |
|
zq_ch, |
|
norm_layer=nn.GroupNorm, |
|
freeze_norm_layer=False, |
|
add_conv=add_conv, |
|
num_groups=32, |
|
eps=1e-6, |
|
affine=True, |
|
) |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
if ( |
|
version.parse(torch.__version__) < version.parse("2.1") |
|
and x.dtype == torch.bfloat16 |
|
): |
|
x = x.to(dtype=torch.float32) |
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
x = x.to(dtype=torch.bfloat16) |
|
else: |
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
if self.with_conv: |
|
pad = (0, 1, 0, 1) |
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) |
|
return x |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout, |
|
temb_channels=512, |
|
zq_ch=None, |
|
add_conv=False, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
self.norm1 = Normalize(in_channels, zq_ch, add_conv=add_conv) |
|
self.conv1 = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if temb_channels > 0: |
|
self.temb_proj = torch.nn.Linear(temb_channels, out_channels) |
|
self.norm2 = Normalize(out_channels, zq_ch, add_conv=add_conv) |
|
self.dropout = torch.nn.Dropout(dropout) |
|
self.conv2 = torch.nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
else: |
|
self.nin_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x, temb, zq=None): |
|
h = x |
|
h = self.norm1(h, zq) |
|
h = nonlinearity(h) |
|
h = self.conv1(h) |
|
|
|
if temb is not None: |
|
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] |
|
|
|
h = self.norm2(h, zq) |
|
h = nonlinearity(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels, zq_ch=None, add_conv=False): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels, zq_ch, add_conv=add_conv) |
|
self.q = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.k = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.v = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.proj_out = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x, zq=None): |
|
h_ = x |
|
h_ = self.norm(h_, zq) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = q.reshape(b, c, h * w) |
|
q = q.permute(0, 2, 1) |
|
k = k.reshape(b, c, h * w) |
|
w_ = torch.bmm(q, k) |
|
w_ = w_ * (int(c) ** (-0.5)) |
|
w_ = torch.nn.functional.softmax(w_, dim=2) |
|
|
|
|
|
v = v.reshape(b, c, h * w) |
|
w_ = w_.permute(0, 2, 1) |
|
h_ = torch.bmm(v, w_) |
|
h_ = h_.reshape(b, c, h, w) |
|
|
|
h_ = self.proj_out(h_) |
|
|
|
return x + h_ |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks, |
|
attn_resolutions, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels, |
|
resolution, |
|
z_channels, |
|
double_z=True, |
|
**ignore_kwargs, |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(AttnBlock(block_in)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, |
|
2 * z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
def forward(self, x): |
|
temb = None |
|
|
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1], temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions - 1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks, |
|
attn_resolutions, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels, |
|
resolution, |
|
z_channels, |
|
give_pre_end=False, |
|
zq_ch=None, |
|
add_conv=False, |
|
**ignorekwargs, |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
|
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
curr_res = resolution // 2 ** (self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
zq_ch=zq_ch, |
|
add_conv=add_conv, |
|
) |
|
self.mid.attn_1 = AttnBlock(block_in, zq_ch, add_conv=add_conv) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
zq_ch=zq_ch, |
|
add_conv=add_conv, |
|
) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for _ in range(self.num_res_blocks + 1): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
zq_ch=zq_ch, |
|
add_conv=add_conv, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(AttnBlock(block_in, zq_ch, add_conv=add_conv)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in, zq_ch, add_conv=add_conv) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, out_ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, z, zq): |
|
self.last_z_shape = z.shape |
|
temb = None |
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h, temb, zq) |
|
h = self.mid.attn_1(h, zq) |
|
h = self.mid.block_2(h, temb, zq) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h, temb, zq) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h, zq) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h, zq) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
|
|
class MoVQ(nn.Module): |
|
def __init__(self, generator_params: dict): |
|
super().__init__() |
|
z_channels = generator_params["z_channels"] |
|
self.config = SimpleNamespace(**generator_params) |
|
self.encoder = Encoder(**generator_params) |
|
self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1) |
|
self.decoder = Decoder(zq_ch=z_channels, **generator_params) |
|
self.dtype = None |
|
self.device = None |
|
|
|
@staticmethod |
|
def get_model_config(pretrained_model_name_or_path, subfolder): |
|
config_path = os.path.join( |
|
pretrained_model_name_or_path, subfolder, "config.json" |
|
) |
|
assert os.path.exists(config_path), "config file not exists." |
|
with open(config_path, "r") as f: |
|
config = json.loads(f.read()) |
|
return config |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path, |
|
subfolder="", |
|
torch_dtype=torch.float32, |
|
): |
|
config = cls.get_model_config(pretrained_model_name_or_path, subfolder) |
|
model = cls(generator_params=config) |
|
ckpt_path = os.path.join( |
|
pretrained_model_name_or_path, subfolder, "movq_model.safetensors" |
|
) |
|
assert os.path.exists( |
|
ckpt_path |
|
), f"ckpt path not exists, please check {ckpt_path}" |
|
assert torch_dtype != torch.float16, "torch_dtype doesn't support fp16" |
|
ckpt_weight = load_file(ckpt_path) |
|
model.load_state_dict(ckpt_weight, strict=True) |
|
model.to(dtype=torch_dtype) |
|
return model |
|
|
|
def to(self, *args, **kwargs): |
|
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to( |
|
*args, **kwargs |
|
) |
|
super(MoVQ, self).to(*args, **kwargs) |
|
self.dtype = dtype if dtype is not None else self.dtype |
|
self.device = device if device is not None else self.device |
|
return self |
|
|
|
@torch.no_grad() |
|
@apply_forward_hook |
|
def encode(self, x): |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
return h |
|
|
|
@torch.no_grad() |
|
@apply_forward_hook |
|
def decode(self, quant): |
|
decoder_input = self.post_quant_conv(quant) |
|
decoded = self.decoder(decoder_input, quant) |
|
return decoded |
|
|