You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Anime Tagger caformer_b36.pexelsv0-full

Model Details

  • Model Type: Multilabel Image classification / feature backbone
  • Model Stats:
    • Params: 152.3M
    • FLOPs / MACs: 132.3G / 66.0G
    • Image size: train = 384 x 384, test = 384 x 384
  • Dataset: animetimm/pexels-tagger-v0-w640-ws-full
    • Tags Count: 18440
      • Nature (#0) Tags Count: 2384
      • People (#1) Tags Count: 1748
      • Architecture (#2) Tags Count: 2288
      • Animals (#3) Tags Count: 973
      • Emotion (#4) Tags Count: 919
      • Style (#5) Tags Count: 1841
      • Activity (#6) Tags Count: 2081
      • Time (#7) Tags Count: 185
      • Colorlight (#8) Tags Count: 637
      • Detail (#9) Tags Count: 520
      • Food (#10) Tags Count: 1221
      • Transport (#11) Tags Count: 709
      • Culture (#12) Tags Count: 1219
      • Art (#13) Tags Count: 990
      • Technology (#14) Tags Count: 725

Results

# Macro@0.40 (F1/MCC/P/R) Micro@0.40 (F1/MCC/P/R) Macro@Best (F1/P/R)
Validation 0.283 / 0.294 / 0.370 / 0.254 0.524 / 0.527 / 0.599 / 0.465 ---
Test 0.284 / 0.295 / 0.371 / 0.255 0.525 / 0.528 / 0.600 / 0.466 0.347 / 0.347 / 0.406
  • Macro/Micro@0.40 means the metrics on the threshold 0.40.
  • Macro@Best means the mean metrics on the tag-level thresholds on each tags, which should have the best F1 scores.

Thresholds

Category Name Alpha Threshold Micro@Thr (F1/P/R) Macro@0.40 (F1/P/R) Macro@Best (F1/P/R)
0 nature 1 0.34 0.601 / 0.617 / 0.587 0.255 / 0.360 / 0.229 0.329 / 0.321 / 0.394
1 people 1 0.31 0.532 / 0.532 / 0.532 0.304 / 0.396 / 0.273 0.360 / 0.374 / 0.406
2 architecture 1 0.3 0.516 / 0.509 / 0.523 0.258 / 0.351 / 0.225 0.325 / 0.328 / 0.384
3 animals 1 0.37 0.624 / 0.633 / 0.615 0.395 / 0.444 / 0.384 0.460 / 0.440 / 0.548
4 emotion 1 0.29 0.529 / 0.519 / 0.539 0.193 / 0.310 / 0.160 0.253 / 0.269 / 0.294
5 style 1 0.29 0.501 / 0.488 / 0.515 0.211 / 0.317 / 0.178 0.274 / 0.281 / 0.325
6 activity 1 0.31 0.544 / 0.537 / 0.551 0.326 / 0.393 / 0.300 0.388 / 0.375 / 0.457
7 time 1 0.29 0.550 / 0.537 / 0.563 0.201 / 0.337 / 0.172 0.272 / 0.294 / 0.341
8 colorlight 1 0.24 0.429 / 0.413 / 0.447 0.185 / 0.297 / 0.155 0.253 / 0.259 / 0.303
9 detail 1 0.27 0.462 / 0.476 / 0.449 0.217 / 0.318 / 0.186 0.287 / 0.287 / 0.343
10 food 1 0.33 0.552 / 0.534 / 0.571 0.353 / 0.405 / 0.329 0.407 / 0.394 / 0.470
11 transport 1 0.36 0.554 / 0.566 / 0.542 0.327 / 0.385 / 0.305 0.394 / 0.367 / 0.481
12 culture 1 0.29 0.501 / 0.491 / 0.511 0.327 / 0.421 / 0.292 0.384 / 0.406 / 0.424
13 art 1 0.27 0.452 / 0.442 / 0.463 0.292 / 0.371 / 0.261 0.354 / 0.352 / 0.411
14 technology 1 0.3 0.494 / 0.502 / 0.486 0.350 / 0.427 / 0.321 0.407 / 0.419 / 0.460
  • Micro@Thr means the metrics on the category-level suggested thresholds, which are listed in the table above.
  • Macro@0.40 means the metrics on the threshold 0.40.
  • Macro@Best means the metrics on the tag-level thresholds on each tags, which should have the best F1 scores.

For tag-level thresholds, you can find them in selected_tags.csv.

How to Use

We provided a sample image for our code samples, you can find it here.

Use TIMM And Torch

Install dghs-imgutils, timm and other necessary requirements with the following command

pip install 'dghs-imgutils>=0.17.0' torch huggingface_hub timm pillow pandas

After that you can load this model with timm library, and use it for train, validation and test, with the following code

import json

import pandas as pd
import torch
from huggingface_hub import hf_hub_download
from imgutils.data import load_image
from imgutils.preprocess import create_torchvision_transforms
from timm import create_model

repo_id = 'animetimm/caformer_b36.pexelsv0-full'
model = create_model(f'hf-hub:{repo_id}', pretrained=True)
model.eval()

with open(hf_hub_download(repo_id=repo_id, repo_type='model', filename='preprocess.json'), 'r') as f:
    preprocessor = create_torchvision_transforms(json.load(f)['test'])
# Compose(
#     PadToSize(size=(512, 512), interpolation=bilinear, background_color=white)
#     Resize(size=384, interpolation=bicubic, max_size=None, antialias=True)
#     CenterCrop(size=[384, 384])
#     MaybeToTensor()
#     Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
# )

image = load_image('https://huggingface.co/animetimm/caformer_b36.pexelsv0-full/resolve/main/sample.webp')
input_ = preprocessor(image).unsqueeze(0)
# input_, shape: torch.Size([1, 3, 384, 384]), dtype: torch.float32
with torch.no_grad():
    output = model(input_)
    prediction = torch.sigmoid(output)[0]
# output, shape: torch.Size([1, 18440]), dtype: torch.float32
# prediction, shape: torch.Size([18440]), dtype: torch.float32

df_tags = pd.read_csv(
    hf_hub_download(repo_id=repo_id, repo_type='model', filename='selected_tags.csv'),
    keep_default_na=False
)
tags = df_tags['name']
mask = prediction.numpy() >= df_tags['best_threshold']
print(dict(zip(tags[mask].tolist(), prediction[mask].tolist())))
# {'outdoors': 0.8146495223045349,
#  'nature': 0.6344019174575806,
#  'fashion': 0.8642972111701965,
#  'urban': 0.5123583674430847,
#  'woman': 0.8229815363883972,
#  'portrait': 0.6284889578819275,
#  'summer': 0.5277450680732727,
#  'modern': 0.36526161432266235,
#  'elegant': 0.6213363409042358,
#  'lifestyle': 0.3345010578632355,
#  'greenery': 0.7012176513671875,
#  'trees': 0.8490742444992065,
#  'daylight': 0.441753625869751,
#  'natural light': 0.5182833671569824,
#  'fashionable': 0.6848584413528442,
#  'stylish': 0.5571858882904053,
#  'fashion photography': 0.3972109258174896,
#  'north america': 0.9506323337554932,
#  'city life': 0.36047741770744324,
#  'park': 0.8430405855178833,
#  'confidence': 0.48355913162231445,
#  'long hair': 0.44347313046455383,
#  'fashion model': 0.29179278016090393,
#  'urban setting': 0.257258802652359,
#  'professional': 0.3694036304950714,
#  'street style': 0.3732738196849823,
#  'confident': 0.2515304684638977,
#  'sunny day': 0.25001078844070435,
#  'urban fashion': 0.39027780294418335,
#  'outdoor portrait': 0.5426234006881714,
#  'outdoor photography': 0.09817072004079819,
#  'mexico': 0.9254768490791321,
#  'modern fashion': 0.19535645842552185,
#  'fashion shoot': 0.18118932843208313,
#  'blonde': 0.3437434434890747,
#  'portrait photography': 0.20591281354427338,
#  'urban park': 0.6445800065994263,
#  'blonde hair': 0.3630153238773346,
#  'outdoor fashion': 0.25335976481437683,
#  'canon eos': 0.07552232593297958,
#  'ciudad de mexico': 0.9318879246711731,
#  'mexico city': 0.5673938393592834,
#  'female portrait': 0.2128865271806717,
#  'cdmx': 0.8146464228630066,
#  'city park': 0.7205607295036316,
#  'beautiful woman': 0.8344939947128296,
#  'sexy': 0.8086201548576355,
#  'casual elegance': 0.39626604318618774,
#  'confident pose': 0.14261074364185333,
#  'bright day': 0.04884874075651169,
#  'modern woman': 0.2812161445617676,
#  'fashionable woman': 0.07972031831741333,
#  'stylish outfit': 0.07389499992132187,
#  'blond hair': 0.20116303861141205,
#  'white blouse': 0.5901707410812378,
#  'business casual': 0.28336629271507263,
#  'park setting': 0.1550087332725525,
#  'smiling woman': 0.37095949053764343,
#  'blonde woman': 0.16900084912776947,
#  'stylish attire': 0.03601783514022827,
#  'professional look': 0.16206032037734985,
#  'city landscape': 0.022534040734171867,
#  'blonde girl': 0.9979878664016724,
#  'tree-lined path': 0.14010290801525116,
#  'trousers': 0.11853884160518646,
#  'portrait art': 0.9996036887168884,
#  'mexico mujer': 0.9847078323364258,
#  'blond woman': 0.9997660517692566,
#  'girl sexy': 0.9878467917442322,
#  'sexy woman': 0.9642167687416077,
#  'light brown hair': 0.042917393147945404,
#  'mx': 0.9991982579231262}

Use ONNX Model For Inference

Install dghs-imgutils with the following command

pip install 'dghs-imgutils>=0.17.0'

Use multilabel_timm_predict function with the following code

from imgutils.generic import multilabel_timm_predict

nature, people, architecture, animals, emotion, style, activity, time, colorlight, detail, food, transport, culture, art, technology = multilabel_timm_predict(
    'https://huggingface.co/animetimm/caformer_b36.pexelsv0-full/resolve/main/sample.webp',
    repo_id='animetimm/caformer_b36.pexelsv0-full',
    fmt=('nature', 'people', 'architecture', 'animals', 'emotion', 'style', 'activity', 'time', 'colorlight', 'detail', 'food', 'transport', 'culture', 'art', 'technology'),
)

print(nature)
# {'trees': 0.8490744829177856,
#  'park': 0.8430417776107788,
#  'outdoors': 0.8146489858627319,
#  'greenery': 0.7012186646461487,
#  'nature': 0.634401798248291,
#  'park setting': 0.15501540899276733,
#  'tree-lined path': 0.14011254906654358,
#  'outdoor photography': 0.09817290306091309}
print(people)
# {'blond woman': 0.9997661113739014,
#  'portrait art': 0.999603807926178,
#  'blonde girl': 0.9979879856109619,
#  'girl sexy': 0.9878476858139038,
#  'mexico mujer': 0.9847087860107422,
#  'sexy woman': 0.9642203450202942,
#  'beautiful woman': 0.8344992399215698,
#  'woman': 0.8229814767837524,
#  'sexy': 0.808624804019928,
#  'portrait': 0.6284893155097961,
#  'outdoor portrait': 0.5426267385482788,
#  'long hair': 0.4434756636619568,
#  'smiling woman': 0.3709729015827179,
#  'professional': 0.36940687894821167,
#  'blonde hair': 0.36302047967910767,
#  'blonde': 0.3437475562095642,
#  'fashion model': 0.2917952537536621,
#  'modern woman': 0.28122496604919434,
#  'female portrait': 0.21289172768592834,
#  'portrait photography': 0.2059168815612793,
#  'blond hair': 0.20117083191871643,
#  'blonde woman': 0.16900965571403503,
#  'confident pose': 0.14261576533317566,
#  'fashionable woman': 0.07972347736358643,
#  'light brown hair': 0.042922526597976685}
print(architecture)
# {'ciudad de mexico': 0.931889533996582,
#  'cdmx': 0.814650297164917,
#  'city park': 0.7205668687820435,
#  'urban park': 0.644584596157074,
#  'mexico city': 0.5673993825912476,
#  'urban': 0.5123592615127563,
#  'city life': 0.36047929525375366,
#  'urban setting': 0.25726157426834106,
#  'city landscape': 0.022535890340805054}
print(animals)
# {}
print(emotion)
# {'confidence': 0.48356157541275024, 'confident': 0.2515334188938141}
print(style)
# {'fashion': 0.8642969727516174,
#  'fashionable': 0.6848594546318054,
#  'elegant': 0.6213374733924866,
#  'white blouse': 0.5901826024055481,
#  'stylish': 0.5571873188018799,
#  'fashion photography': 0.39721226692199707,
#  'casual elegance': 0.3962761163711548,
#  'urban fashion': 0.39028140902519226,
#  'street style': 0.37327611446380615,
#  'modern': 0.3652629852294922,
#  'business casual': 0.28337597846984863,
#  'outdoor fashion': 0.25336480140686035,
#  'modern fashion': 0.19535967707633972,
#  'fashion shoot': 0.18119221925735474,
#  'professional look': 0.16206982731819153,
#  'trousers': 0.1185469925403595,
#  'stylish outfit': 0.07389819622039795,
#  'stylish attire': 0.036020517349243164}
print(activity)
# {'lifestyle': 0.3345027565956116}
print(time)
# {'summer': 0.5277461409568787,
#  'daylight': 0.4417559504508972,
#  'sunny day': 0.25001394748687744}
print(colorlight)
# {'natural light': 0.5182850956916809, 'bright day': 0.04885092377662659}
print(detail)
# {}
print(food)
# {}
print(transport)
# {}
print(culture)
# {'mx': 0.9991983771324158,
#  'north america': 0.9506326913833618,
#  'mexico': 0.9254778623580933}
print(art)
# {}
print(technology)
# {'canon eos': 0.07552513480186462}

For further information, see documentation of function multilabel_timm_predict.

Citation

@misc{caformer_b36_pexelsv0_full,
  title        = {Anime Tagger caformer_b36.pexelsv0-full},
  author       = {narugo1992 and Deep Generative anime Hobbyist Syndicate (animetimm)},
  year         = {2025},
  howpublished = {\url{https://huggingface.co/animetimm/caformer_b36.pexelsv0-full}},
  note         = {A large-scale anime-style image classification model based on caformer_b36 architecture for multi-label tagging with 18440 tags, trained on anime dataset pexelsv0-full (\url{https://huggingface.co/datasets/animetimm/pexels-tagger-v0-w640-ws-full}). Model parameters: 152.3M, FLOPs: 132.3G, input resolution: 384×384.},
  license      = {gpl-3.0}
}
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for animetimm/caformer_b36.pexelsv0-full

Quantized
(2)
this model

Dataset used to train animetimm/caformer_b36.pexelsv0-full