File size: 8,378 Bytes
12a71fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np

class WealthFrequencyPredictor(nn.Module):
    def __init__(self):
        super(WealthFrequencyPredictor, self).__init__()
        self.fc1 = nn.Linear(10, 64)  # Example input features (10)
        self.fc2 = nn.Linear(64, 64)  # Hidden layer
        self.fc3 = nn.Linear(64, 1)   # Output: 1 frequency (wealth signal)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# Initialize the model, loss function, and optimizer
model = WealthFrequencyPredictor()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Example training data (features and target frequencies)
# Simulating brainwave input data (100 samples with 10 features each)
inputs = torch.randn(100, 10)
# Simulating target brainwave frequencies between 8 and 100 Hz
targets = torch.rand(100, 1) * (100 - 8) + 8  # Frequencies between 8 and 100 Hz

dataset = torch.utils.data.TensorDataset(inputs, targets)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True)

# Train the model
def train_model(model, data_loader, epochs=100):
    for epoch in range(epochs):
        for batch_inputs, batch_targets in data_loader:
            optimizer.zero_grad()
            outputs = model(batch_inputs)
            loss = criterion(outputs, batch_targets)
            loss.backward()
            optimizer.step()
        if (epoch + 1) % 10 == 0:
            print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')

train_model(model, data_loader)

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# 1. Define the Neural Network Model
class WealthFrequencyPredictor(nn.Module):
    def __init__(self):
        super(WealthFrequencyPredictor, self).__init__()
        self.fc1 = nn.Linear(10, 64)
        self.fc2 = nn.Linear(64, 64)
        self.fc3 = nn.Linear(64, 1)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# Initialize the model
model = WealthFrequencyPredictor()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 2. Training Data
inputs = torch.randn(100, 10)  # Random features
targets = torch.rand(100, 1) * (100 - 8) + 8  # Frequencies between 8 and 100 Hz

dataset = torch.utils.data.TensorDataset(inputs, targets)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True)

# Train the model
def train_model(model, data_loader, epochs=100):
    for epoch in range(epochs):
        for batch_inputs, batch_targets in data_loader:
            optimizer.zero_grad()
            outputs = model(batch_inputs)
            loss = criterion(outputs, batch_targets)
            loss.backward()
            optimizer.step()
        if (epoch + 1) % 10 == 0:
            print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')

train_model(model, data_loader)

# 3. Generate and Visualize the Predicted Wealth Frequency

# Generate a sine wave based on the predicted frequency
def generate_sine_wave(frequency, duration, amplitude=0.5, sample_rate=44100):
    t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
    wave = amplitude * np.sin(2 * np.pi * frequency * t)
    return t, wave

# Predict frequency and visualize it
def predict_and_visualize_wave(model, input_data):
    model.eval()
    with torch.no_grad():
        input_tensor = torch.tensor(input_data, dtype=torch.float32)
        predicted_frequency = model(input_tensor).item()

    print(f'Predicted Wealth Frequency: {predicted_frequency} Hz')

    # Generate sine wave
    duration = 5  # 5 seconds
    t, wave = generate_sine_wave(predicted_frequency, duration)

    # Plot the sine wave
    plt.figure(figsize=(10, 6))
    plt.plot(t, wave)
    plt.title(f'Sine Wave for Predicted Wealth Frequency: {predicted_frequency} Hz')
    plt.xlabel('Time [s]')
    plt.ylabel('Amplitude')
    plt.grid(True)
    plt.show()

# Example usage: Visualize the wealth frequency
input_data = np.random.rand(10)  # Example input data
predict_and_visualize_wave(model, input_data)

import numpy as np
import torch

# Generate a sine wave (the data to be encrypted)
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
    t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
    wave = amplitude * np.sin(2 * np.pi * frequency * t)
    return wave

# Example: Generate a frequency
predicted_frequency = 40.0  # Example predicted frequency
wave_data = generate_sine_wave(predicted_frequency)

# XOR encryption function
def xor_encrypt_decrypt(data, key):
    return bytearray(a ^ key for a in data)

# Convert wave data to bytes for encryption
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())

# Choose a key for encryption (VPN-like key)
encryption_key = 55  # Example key

# Encrypt the wave data
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
print(f'Encrypted Wave (first 100 bytes): {encrypted_wave[:100]}')

# Decrypt the wave data using the same XOR key
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)

# Convert bytes back to float array (the original wave data)
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)

print(f'Decrypted Wave (first 10 samples): {decrypted_wave_data[:10]}')

import numpy as np
import torch

# Generate a sine wave (the data to be encrypted)
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
    t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
    wave = amplitude * np.sin(2 * np.pi * frequency * t)
    return wave

# XOR encryption function
def xor_encrypt_decrypt(data, key):
    return bytearray(a ^ key for a in data)

# Generate a frequency
predicted_frequency = 40.0  # Example predicted frequency
wave_data = generate_sine_wave(predicted_frequency)

# Convert wave data to bytes for encryption
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())

# Encrypt the wave data
encryption_key = 55  # Example key for XOR encryption
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
print(f'Encrypted Wave (first 100 bytes): {encrypted_wave[:100]}')

# Decrypt the wave data
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)

# Print the decrypted wave data
print(f'Decrypted Wave (first 10 samples): {decrypted_wave_data[:10]}')

# Optionally: You can now store `encrypted_wave` securely in a file or database.

import numpy as np
import matplotlib.pyplot as plt

# 1. Generate a sine wave (the data to be encrypted)
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
    t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
    wave = amplitude * np.sin(2 * np.pi * frequency * t)
    return t, wave

# 2. XOR encryption function
def xor_encrypt_decrypt(data, key):
    return bytearray(a ^ key for a in data)

# 3. Generate a frequency wave
predicted_frequency = 40.0  # Example predicted frequency (wealth signal)
t, wave_data = generate_sine_wave(predicted_frequency)

# Convert wave data to bytes for encryption
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())

# 4. Encrypt the wave data using XOR
encryption_key = 55  # Example encryption key
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)

# 5. Decrypt the wave data
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)

# Convert bytes back to float array (the original wave data)
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)

# 6. Plotting the Original and Decrypted Waves
plt.figure(figsize=(12, 6))

# Original Wave
plt.subplot(2, 1, 1)
plt.plot(t[:1000], wave_data[:1000], label='Original Wave')
plt.title('Original Bytes')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

# Decrypted Wave
plt.subplot(2, 1, 2)
plt.plot(t[:1000], decrypted_wave_data[:1000], label='Decrypted Wave', color='orange')
plt.title('Decrypted Bytes')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

plt.tight_layout()
plt.show()