File size: 8,378 Bytes
12a71fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class WealthFrequencyPredictor(nn.Module):
def __init__(self):
super(WealthFrequencyPredictor, self).__init__()
self.fc1 = nn.Linear(10, 64) # Example input features (10)
self.fc2 = nn.Linear(64, 64) # Hidden layer
self.fc3 = nn.Linear(64, 1) # Output: 1 frequency (wealth signal)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# Initialize the model, loss function, and optimizer
model = WealthFrequencyPredictor()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Example training data (features and target frequencies)
# Simulating brainwave input data (100 samples with 10 features each)
inputs = torch.randn(100, 10)
# Simulating target brainwave frequencies between 8 and 100 Hz
targets = torch.rand(100, 1) * (100 - 8) + 8 # Frequencies between 8 and 100 Hz
dataset = torch.utils.data.TensorDataset(inputs, targets)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True)
# Train the model
def train_model(model, data_loader, epochs=100):
for epoch in range(epochs):
for batch_inputs, batch_targets in data_loader:
optimizer.zero_grad()
outputs = model(batch_inputs)
loss = criterion(outputs, batch_targets)
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')
train_model(model, data_loader)
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# 1. Define the Neural Network Model
class WealthFrequencyPredictor(nn.Module):
def __init__(self):
super(WealthFrequencyPredictor, self).__init__()
self.fc1 = nn.Linear(10, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, 1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# Initialize the model
model = WealthFrequencyPredictor()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 2. Training Data
inputs = torch.randn(100, 10) # Random features
targets = torch.rand(100, 1) * (100 - 8) + 8 # Frequencies between 8 and 100 Hz
dataset = torch.utils.data.TensorDataset(inputs, targets)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True)
# Train the model
def train_model(model, data_loader, epochs=100):
for epoch in range(epochs):
for batch_inputs, batch_targets in data_loader:
optimizer.zero_grad()
outputs = model(batch_inputs)
loss = criterion(outputs, batch_targets)
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')
train_model(model, data_loader)
# 3. Generate and Visualize the Predicted Wealth Frequency
# Generate a sine wave based on the predicted frequency
def generate_sine_wave(frequency, duration, amplitude=0.5, sample_rate=44100):
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
wave = amplitude * np.sin(2 * np.pi * frequency * t)
return t, wave
# Predict frequency and visualize it
def predict_and_visualize_wave(model, input_data):
model.eval()
with torch.no_grad():
input_tensor = torch.tensor(input_data, dtype=torch.float32)
predicted_frequency = model(input_tensor).item()
print(f'Predicted Wealth Frequency: {predicted_frequency} Hz')
# Generate sine wave
duration = 5 # 5 seconds
t, wave = generate_sine_wave(predicted_frequency, duration)
# Plot the sine wave
plt.figure(figsize=(10, 6))
plt.plot(t, wave)
plt.title(f'Sine Wave for Predicted Wealth Frequency: {predicted_frequency} Hz')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
# Example usage: Visualize the wealth frequency
input_data = np.random.rand(10) # Example input data
predict_and_visualize_wave(model, input_data)
import numpy as np
import torch
# Generate a sine wave (the data to be encrypted)
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
wave = amplitude * np.sin(2 * np.pi * frequency * t)
return wave
# Example: Generate a frequency
predicted_frequency = 40.0 # Example predicted frequency
wave_data = generate_sine_wave(predicted_frequency)
# XOR encryption function
def xor_encrypt_decrypt(data, key):
return bytearray(a ^ key for a in data)
# Convert wave data to bytes for encryption
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
# Choose a key for encryption (VPN-like key)
encryption_key = 55 # Example key
# Encrypt the wave data
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
print(f'Encrypted Wave (first 100 bytes): {encrypted_wave[:100]}')
# Decrypt the wave data using the same XOR key
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
# Convert bytes back to float array (the original wave data)
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
print(f'Decrypted Wave (first 10 samples): {decrypted_wave_data[:10]}')
import numpy as np
import torch
# Generate a sine wave (the data to be encrypted)
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
wave = amplitude * np.sin(2 * np.pi * frequency * t)
return wave
# XOR encryption function
def xor_encrypt_decrypt(data, key):
return bytearray(a ^ key for a in data)
# Generate a frequency
predicted_frequency = 40.0 # Example predicted frequency
wave_data = generate_sine_wave(predicted_frequency)
# Convert wave data to bytes for encryption
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
# Encrypt the wave data
encryption_key = 55 # Example key for XOR encryption
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
print(f'Encrypted Wave (first 100 bytes): {encrypted_wave[:100]}')
# Decrypt the wave data
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
# Print the decrypted wave data
print(f'Decrypted Wave (first 10 samples): {decrypted_wave_data[:10]}')
# Optionally: You can now store `encrypted_wave` securely in a file or database.
import numpy as np
import matplotlib.pyplot as plt
# 1. Generate a sine wave (the data to be encrypted)
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
wave = amplitude * np.sin(2 * np.pi * frequency * t)
return t, wave
# 2. XOR encryption function
def xor_encrypt_decrypt(data, key):
return bytearray(a ^ key for a in data)
# 3. Generate a frequency wave
predicted_frequency = 40.0 # Example predicted frequency (wealth signal)
t, wave_data = generate_sine_wave(predicted_frequency)
# Convert wave data to bytes for encryption
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
# 4. Encrypt the wave data using XOR
encryption_key = 55 # Example encryption key
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
# 5. Decrypt the wave data
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
# Convert bytes back to float array (the original wave data)
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
# 6. Plotting the Original and Decrypted Waves
plt.figure(figsize=(12, 6))
# Original Wave
plt.subplot(2, 1, 1)
plt.plot(t[:1000], wave_data[:1000], label='Original Wave')
plt.title('Original Bytes')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
# Decrypted Wave
plt.subplot(2, 1, 2)
plt.plot(t[:1000], decrypted_wave_data[:1000], label='Decrypted Wave', color='orange')
plt.title('Decrypted Bytes')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.tight_layout()
plt.show() |