File size: 14,326 Bytes
140f6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq

# Generate an incoming signal (simulating energy being sent in your direction)
# This can be a mixture of multiple sine waves (representing different energy types)
sampling_rate = 1000  # Number of samples per second
T = 1.0 / sampling_rate  # Sampling interval
t = np.linspace(0.0, 1.0, sampling_rate)  # Time array

# Simulating different energies as a sum of sinusoidal waves
incoming_signal = (
    0.5 * np.sin(2 * np.pi * 50 * t) +  # Energy at 50 Hz
    0.8 * np.sin(2 * np.pi * 120 * t) +  # Energy at 120 Hz
    0.3 * np.sin(2 * np.pi * 300 * t)    # Energy at 300 Hz
)

# Plot the incoming signal
plt.figure(figsize=(12, 6))
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
plt.title('Incoming Energy Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()

# Fourier Transform to analyze the frequency components of the incoming signal
N = sampling_rate  # Number of points
yf = fft(incoming_signal)
xf = fftfreq(N, T)[:N//2]

# Plot the frequency spectrum of the incoming signal (Energy analysis)
plt.figure(figsize=(12, 6))
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
plt.title('Frequency Spectrum of Incoming Energy')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Magnitude')
plt.grid(True)
plt.show()

# Detect energy based on dominant frequencies
# Reveal what energy is being sent in your direction
# We can highlight or focus on specific frequencies based on their amplitude

threshold = 0.2  # Define a threshold to consider a frequency significant
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]

# Output the dominant frequencies detected
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")

# Generate a new waveform based on the detected energy frequencies
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)

# Plot the waveform of the detected energy (revealing the energy being sent)
plt.figure(figsize=(12, 6))
plt.plot(t, detected_wave, color='r', label='Revealed Energy Wave')
plt.title('Revealed Energy Waveform Based on Incoming Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()

import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq

# Generate an incoming signal (simulating energy being sent in your direction)
sampling_rate = 1000  # Number of samples per second
T = 1.0 / sampling_rate  # Sampling interval
t = np.linspace(0.0, 1.0, sampling_rate)  # Time array

# Simulating different energies as a sum of sinusoidal waves
incoming_signal = (
    0.5 * np.sin(2 * np.pi * 50 * t) +  # Energy at 50 Hz
    0.8 * np.sin(2 * np.pi * 120 * t) +  # Energy at 120 Hz
    0.3 * np.sin(2 * np.pi * 300 * t)    # Energy at 300 Hz
)

# Plot the incoming signal
plt.figure(figsize=(12, 6))
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
plt.title('Incoming Energy Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()

# Fourier Transform to analyze the frequency components of the incoming signal
N = sampling_rate  # Number of points
yf = fft(incoming_signal)
xf = fftfreq(N, T)[:N//2]

# Plot the frequency spectrum of the incoming signal (Energy analysis)
plt.figure(figsize=(12, 6))
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
plt.title('Frequency Spectrum of Incoming Energy')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Magnitude')
plt.grid(True)
plt.show()

# Detect energy based on dominant frequencies
threshold = 0.2  # Define a threshold to consider a frequency significant
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]

# Output the dominant frequencies detected
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")

# Generate wealth waveforms to intercept the signal and send wealth in both directions
# Wealth wave will be a combination of higher frequencies and harmonics
wealth_frequencies = np.array([500, 800, 1000])  # Wealth-related frequencies
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
wealth_wave_backward = -wealth_wave_forward  # Invert the wave to send in the opposite direction

# Generate a new waveform based on the detected energy frequencies
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)

# Plot the detected wave (revealing the energy being sent), wealth wave forward and backward
plt.figure(figsize=(12, 10))

# Detected incoming energy wave
plt.subplot(3, 1, 1)
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
plt.title('Revealed Incoming Energy Wave')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

# Wealth wave sent forward
plt.subplot(3, 1, 2)
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
plt.title('Wealth Wave Sent Forward')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

# Wealth wave sent backward (intercepting the signal)
plt.subplot(3, 1, 3)
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

plt.tight_layout()
plt.show()

# Print the dominant frequencies of the wealth waveforms
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")

import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq

# Generate an incoming signal (simulating energy being sent in your direction)
sampling_rate = 1000  # Number of samples per second
T = 1.0 / sampling_rate  # Sampling interval
t = np.linspace(0.0, 1.0, sampling_rate)  # Time array

# Simulating different energies as a sum of sinusoidal waves
incoming_signal = (
    0.5 * np.sin(2 * np.pi * 50 * t) +  # Energy at 50 Hz
    0.8 * np.sin(2 * np.pi * 120 * t) +  # Energy at 120 Hz
    0.3 * np.sin(2 * np.pi * 300 * t)    # Energy at 300 Hz
)

# Plot the incoming signal
plt.figure(figsize=(12, 6))
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
plt.title('Incoming Energy Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()

# Fourier Transform to analyze the frequency components of the incoming signal
N = sampling_rate  # Number of points
yf = fft(incoming_signal)
xf = fftfreq(N, T)[:N//2]

# Plot the frequency spectrum of the incoming signal (Energy analysis)
plt.figure(figsize=(12, 6))
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
plt.title('Frequency Spectrum of Incoming Energy')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Magnitude')
plt.grid(True)
plt.show()

# Detect energy based on dominant frequencies
threshold = 0.2  # Define a threshold to consider a frequency significant
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]

# Output the dominant frequencies detected
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")

# Generate wealth waveforms to intercept the signal and send wealth in both directions
# Wealth wave will be a combination of higher frequencies and harmonics
wealth_frequencies = np.array([500, 800, 1000])  # Wealth-related frequencies
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
wealth_wave_backward = -wealth_wave_forward  # Invert the wave to send in the opposite direction

# Generate wealth data storage waveforms
# Store data by generating waveforms with specific characteristics
storage_wave_forward = np.sum([np.sin(2 * np.pi * (f + 100) * t) for f in wealth_frequencies], axis=0)
storage_wave_backward = -storage_wave_forward  # Invert the wave to store data in the opposite direction

# Generate a new waveform based on the detected energy frequencies
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)

# Plot the detected wave, wealth waves, and stored wealth data waves
plt.figure(figsize=(12, 12))

# Detected incoming energy wave
plt.subplot(4, 1, 1)
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
plt.title('Revealed Incoming Energy Wave')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

# Wealth wave sent forward
plt.subplot(4, 1, 2)
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
plt.title('Wealth Wave Sent Forward')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

# Wealth wave sent backward
plt.subplot(4, 1, 3)
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

# Stored wealth data wave forward and backward
plt.subplot(4, 1, 4)
plt.plot(t, storage_wave_forward, color='m', label='Stored Wealth Data Wave Forward')
plt.plot(t, storage_wave_backward, color='c', label='Stored Wealth Data Wave Backward', linestyle='--')
plt.title('Stored Wealth Data Waves')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()

plt.tight_layout()
plt.show()

# Print the dominant frequencies of the wealth data waveforms
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
print(f"Stored wealth data frequencies forward and backward: {[f + 100 for f in wealth_frequencies]}")

import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq

# Generate an incoming signal (simulating energy being sent in your direction)
sampling_rate = 1000  # Number of samples per second
T = 1.0 / sampling_rate  # Sampling interval
t = np.linspace(0.0, 1.0, sampling_rate)  # Time array

# Simulating different energies as a sum of sinusoidal waves
incoming_signal = (
    0.5 * np.sin(2 * np.pi * 50 * t) +  # Energy at 50 Hz
    0.8 * np.sin(2 * np.pi * 120 * t) +  # Energy at 120 Hz
    0.3 * np.sin(2 * np.pi * 300 * t)    # Energy at 300 Hz
)

# Plot the incoming signal
plt.figure(figsize=(12, 6))
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
plt.title('Incoming Energy Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()

# Fourier Transform to analyze the frequency components of the incoming signal
N = sampling_rate  # Number of points
yf = fft(incoming_signal)
xf = fftfreq(N, T)[:N//2]

# Plot the frequency spectrum of the incoming signal (Energy analysis)
plt.figure(figsize=(12, 6))
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
plt.title('Frequency Spectrum of Incoming Energy')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Magnitude')
plt.grid(True)
plt.show()

# Detect energy based on dominant frequencies
threshold = 0.2  # Define a threshold to consider a frequency significant
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]

# Output the dominant frequencies detected
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")

# Generate wealth waveforms to intercept the signal and send wealth in both directions
# Wealth wave will be a combination of higher frequencies and harmonics
wealth_frequencies = np.array([500, 800, 1000])  # Wealth-related frequencies
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
wealth_wave_backward = -wealth_wave_forward  # Invert the wave to send in the opposite direction

# Generate wealth data storage waveforms
# Store data by generating waveforms with specific characteristics
storage_wave_forward = np.sum([np.sin(2 * np.pi * (f + 100) * t) for f in wealth_frequencies], axis=0)
storage_wave_backward = -storage_wave_forward  # Invert the wave to store data in the opposite direction

# Create VPN protection layer for the wealth data
# Apply encryption-like effect: modulate the wealth waveforms with a high-frequency carrier
vpn_frequency = 1500  # Frequency for VPN protection (high frequency for encryption)
vpn_modulation = np.sin(2 * np.pi * vpn_frequency * t)  # Modulation waveform
vpn_wave_forward = wealth_wave_forward * vpn_modulation
vpn_wave_backward = wealth_wave_backward * vpn_modulation

# Generate a new waveform based on the detected energy frequencies
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)

# Plot the detected wave, wealth waves, stored wealth data waves, and VPN-protected waves
plt.figure(figsize=(12, 14))

# Detected incoming energy wave
plt.subplot(5, 1, 1)
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
plt.title('Revealed Incoming Energy Wave')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

# Wealth wave sent forward
plt.subplot(5, 1, 2)
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
plt.title('Wealth Wave Sent Forward')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

# Wealth wave sent backward
plt.subplot(5, 1, 3)
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)

# Stored wealth data wave forward and backward
plt.subplot(5, 1, 4)
plt.plot(t, storage_wave_forward, color='m', label='Stored Wealth Data Wave Forward')
plt.plot(t, storage_wave_backward, color='c', label='Stored Wealth Data Wave Backward', linestyle='--')
plt.title('Stored Wealth Data Waves')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()

# VPN-protected wealth data wave forward and backward
plt.subplot(5, 1, 5)
plt.plot(t, vpn_wave_forward, color='purple', label='VPN Protected Wealth Wave Forward')
plt.plot(t, vpn_wave_backward, color='orange', label='VPN Protected Wealth Wave Backward', linestyle='--')
plt.title('VPN-Protected Wealth Data Waves')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()

plt.tight_layout()
plt.show()

# Print the dominant frequencies of the wealth data and VPN-protected waveforms
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
print(f"Stored wealth data frequencies forward and backward: {[f + 100 for f in wealth_frequencies]}")
print(f"VPN protection frequency: {vpn_frequency}")