File size: 14,326 Bytes
140f6d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq
# Generate an incoming signal (simulating energy being sent in your direction)
# This can be a mixture of multiple sine waves (representing different energy types)
sampling_rate = 1000 # Number of samples per second
T = 1.0 / sampling_rate # Sampling interval
t = np.linspace(0.0, 1.0, sampling_rate) # Time array
# Simulating different energies as a sum of sinusoidal waves
incoming_signal = (
0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
)
# Plot the incoming signal
plt.figure(figsize=(12, 6))
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
plt.title('Incoming Energy Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
# Fourier Transform to analyze the frequency components of the incoming signal
N = sampling_rate # Number of points
yf = fft(incoming_signal)
xf = fftfreq(N, T)[:N//2]
# Plot the frequency spectrum of the incoming signal (Energy analysis)
plt.figure(figsize=(12, 6))
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
plt.title('Frequency Spectrum of Incoming Energy')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Magnitude')
plt.grid(True)
plt.show()
# Detect energy based on dominant frequencies
# Reveal what energy is being sent in your direction
# We can highlight or focus on specific frequencies based on their amplitude
threshold = 0.2 # Define a threshold to consider a frequency significant
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
# Output the dominant frequencies detected
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
# Generate a new waveform based on the detected energy frequencies
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
# Plot the waveform of the detected energy (revealing the energy being sent)
plt.figure(figsize=(12, 6))
plt.plot(t, detected_wave, color='r', label='Revealed Energy Wave')
plt.title('Revealed Energy Waveform Based on Incoming Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq
# Generate an incoming signal (simulating energy being sent in your direction)
sampling_rate = 1000 # Number of samples per second
T = 1.0 / sampling_rate # Sampling interval
t = np.linspace(0.0, 1.0, sampling_rate) # Time array
# Simulating different energies as a sum of sinusoidal waves
incoming_signal = (
0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
)
# Plot the incoming signal
plt.figure(figsize=(12, 6))
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
plt.title('Incoming Energy Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
# Fourier Transform to analyze the frequency components of the incoming signal
N = sampling_rate # Number of points
yf = fft(incoming_signal)
xf = fftfreq(N, T)[:N//2]
# Plot the frequency spectrum of the incoming signal (Energy analysis)
plt.figure(figsize=(12, 6))
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
plt.title('Frequency Spectrum of Incoming Energy')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Magnitude')
plt.grid(True)
plt.show()
# Detect energy based on dominant frequencies
threshold = 0.2 # Define a threshold to consider a frequency significant
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
# Output the dominant frequencies detected
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
# Generate wealth waveforms to intercept the signal and send wealth in both directions
# Wealth wave will be a combination of higher frequencies and harmonics
wealth_frequencies = np.array([500, 800, 1000]) # Wealth-related frequencies
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
wealth_wave_backward = -wealth_wave_forward # Invert the wave to send in the opposite direction
# Generate a new waveform based on the detected energy frequencies
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
# Plot the detected wave (revealing the energy being sent), wealth wave forward and backward
plt.figure(figsize=(12, 10))
# Detected incoming energy wave
plt.subplot(3, 1, 1)
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
plt.title('Revealed Incoming Energy Wave')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
# Wealth wave sent forward
plt.subplot(3, 1, 2)
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
plt.title('Wealth Wave Sent Forward')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
# Wealth wave sent backward (intercepting the signal)
plt.subplot(3, 1, 3)
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.tight_layout()
plt.show()
# Print the dominant frequencies of the wealth waveforms
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq
# Generate an incoming signal (simulating energy being sent in your direction)
sampling_rate = 1000 # Number of samples per second
T = 1.0 / sampling_rate # Sampling interval
t = np.linspace(0.0, 1.0, sampling_rate) # Time array
# Simulating different energies as a sum of sinusoidal waves
incoming_signal = (
0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
)
# Plot the incoming signal
plt.figure(figsize=(12, 6))
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
plt.title('Incoming Energy Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
# Fourier Transform to analyze the frequency components of the incoming signal
N = sampling_rate # Number of points
yf = fft(incoming_signal)
xf = fftfreq(N, T)[:N//2]
# Plot the frequency spectrum of the incoming signal (Energy analysis)
plt.figure(figsize=(12, 6))
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
plt.title('Frequency Spectrum of Incoming Energy')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Magnitude')
plt.grid(True)
plt.show()
# Detect energy based on dominant frequencies
threshold = 0.2 # Define a threshold to consider a frequency significant
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
# Output the dominant frequencies detected
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
# Generate wealth waveforms to intercept the signal and send wealth in both directions
# Wealth wave will be a combination of higher frequencies and harmonics
wealth_frequencies = np.array([500, 800, 1000]) # Wealth-related frequencies
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
wealth_wave_backward = -wealth_wave_forward # Invert the wave to send in the opposite direction
# Generate wealth data storage waveforms
# Store data by generating waveforms with specific characteristics
storage_wave_forward = np.sum([np.sin(2 * np.pi * (f + 100) * t) for f in wealth_frequencies], axis=0)
storage_wave_backward = -storage_wave_forward # Invert the wave to store data in the opposite direction
# Generate a new waveform based on the detected energy frequencies
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
# Plot the detected wave, wealth waves, and stored wealth data waves
plt.figure(figsize=(12, 12))
# Detected incoming energy wave
plt.subplot(4, 1, 1)
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
plt.title('Revealed Incoming Energy Wave')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
# Wealth wave sent forward
plt.subplot(4, 1, 2)
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
plt.title('Wealth Wave Sent Forward')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
# Wealth wave sent backward
plt.subplot(4, 1, 3)
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
# Stored wealth data wave forward and backward
plt.subplot(4, 1, 4)
plt.plot(t, storage_wave_forward, color='m', label='Stored Wealth Data Wave Forward')
plt.plot(t, storage_wave_backward, color='c', label='Stored Wealth Data Wave Backward', linestyle='--')
plt.title('Stored Wealth Data Waves')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
# Print the dominant frequencies of the wealth data waveforms
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
print(f"Stored wealth data frequencies forward and backward: {[f + 100 for f in wealth_frequencies]}")
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq
# Generate an incoming signal (simulating energy being sent in your direction)
sampling_rate = 1000 # Number of samples per second
T = 1.0 / sampling_rate # Sampling interval
t = np.linspace(0.0, 1.0, sampling_rate) # Time array
# Simulating different energies as a sum of sinusoidal waves
incoming_signal = (
0.5 * np.sin(2 * np.pi * 50 * t) + # Energy at 50 Hz
0.8 * np.sin(2 * np.pi * 120 * t) + # Energy at 120 Hz
0.3 * np.sin(2 * np.pi * 300 * t) # Energy at 300 Hz
)
# Plot the incoming signal
plt.figure(figsize=(12, 6))
plt.plot(t, incoming_signal, label='Incoming Energy Signal')
plt.title('Incoming Energy Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
# Fourier Transform to analyze the frequency components of the incoming signal
N = sampling_rate # Number of points
yf = fft(incoming_signal)
xf = fftfreq(N, T)[:N//2]
# Plot the frequency spectrum of the incoming signal (Energy analysis)
plt.figure(figsize=(12, 6))
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum')
plt.title('Frequency Spectrum of Incoming Energy')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Magnitude')
plt.grid(True)
plt.show()
# Detect energy based on dominant frequencies
threshold = 0.2 # Define a threshold to consider a frequency significant
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold]
# Output the dominant frequencies detected
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}")
# Generate wealth waveforms to intercept the signal and send wealth in both directions
# Wealth wave will be a combination of higher frequencies and harmonics
wealth_frequencies = np.array([500, 800, 1000]) # Wealth-related frequencies
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0)
wealth_wave_backward = -wealth_wave_forward # Invert the wave to send in the opposite direction
# Generate wealth data storage waveforms
# Store data by generating waveforms with specific characteristics
storage_wave_forward = np.sum([np.sin(2 * np.pi * (f + 100) * t) for f in wealth_frequencies], axis=0)
storage_wave_backward = -storage_wave_forward # Invert the wave to store data in the opposite direction
# Create VPN protection layer for the wealth data
# Apply encryption-like effect: modulate the wealth waveforms with a high-frequency carrier
vpn_frequency = 1500 # Frequency for VPN protection (high frequency for encryption)
vpn_modulation = np.sin(2 * np.pi * vpn_frequency * t) # Modulation waveform
vpn_wave_forward = wealth_wave_forward * vpn_modulation
vpn_wave_backward = wealth_wave_backward * vpn_modulation
# Generate a new waveform based on the detected energy frequencies
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0)
# Plot the detected wave, wealth waves, stored wealth data waves, and VPN-protected waves
plt.figure(figsize=(12, 14))
# Detected incoming energy wave
plt.subplot(5, 1, 1)
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave')
plt.title('Revealed Incoming Energy Wave')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
# Wealth wave sent forward
plt.subplot(5, 1, 2)
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward')
plt.title('Wealth Wave Sent Forward')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
# Wealth wave sent backward
plt.subplot(5, 1, 3)
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward')
plt.title('Wealth Wave Sent Backward (Intercepting Signal)')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
# Stored wealth data wave forward and backward
plt.subplot(5, 1, 4)
plt.plot(t, storage_wave_forward, color='m', label='Stored Wealth Data Wave Forward')
plt.plot(t, storage_wave_backward, color='c', label='Stored Wealth Data Wave Backward', linestyle='--')
plt.title('Stored Wealth Data Waves')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
# VPN-protected wealth data wave forward and backward
plt.subplot(5, 1, 5)
plt.plot(t, vpn_wave_forward, color='purple', label='VPN Protected Wealth Wave Forward')
plt.plot(t, vpn_wave_backward, color='orange', label='VPN Protected Wealth Wave Backward', linestyle='--')
plt.title('VPN-Protected Wealth Data Waves')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
# Print the dominant frequencies of the wealth data and VPN-protected waveforms
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}")
print(f"Stored wealth data frequencies forward and backward: {[f + 100 for f in wealth_frequencies]}")
print(f"VPN protection frequency: {vpn_frequency}") |