|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from scipy.fft import fft, fftfreq |
|
|
|
|
|
|
|
sampling_rate = 1000 |
|
T = 1.0 / sampling_rate |
|
t = np.linspace(0.0, 1.0, sampling_rate) |
|
|
|
|
|
incoming_signal = ( |
|
0.5 * np.sin(2 * np.pi * 50 * t) + |
|
0.8 * np.sin(2 * np.pi * 120 * t) + |
|
0.3 * np.sin(2 * np.pi * 300 * t) |
|
) |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(t, incoming_signal, label='Incoming Energy Signal') |
|
plt.title('Incoming Energy Signal') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
N = sampling_rate |
|
yf = fft(incoming_signal) |
|
xf = fftfreq(N, T)[:N//2] |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum') |
|
plt.title('Frequency Spectrum of Incoming Energy') |
|
plt.xlabel('Frequency [Hz]') |
|
plt.ylabel('Magnitude') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
threshold = 0.2 |
|
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold] |
|
|
|
|
|
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}") |
|
|
|
|
|
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0) |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(t, detected_wave, color='r', label='Revealed Energy Wave') |
|
plt.title('Revealed Energy Waveform Based on Incoming Signal') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from scipy.fft import fft, fftfreq |
|
|
|
|
|
sampling_rate = 1000 |
|
T = 1.0 / sampling_rate |
|
t = np.linspace(0.0, 1.0, sampling_rate) |
|
|
|
|
|
incoming_signal = ( |
|
0.5 * np.sin(2 * np.pi * 50 * t) + |
|
0.8 * np.sin(2 * np.pi * 120 * t) + |
|
0.3 * np.sin(2 * np.pi * 300 * t) |
|
) |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(t, incoming_signal, label='Incoming Energy Signal') |
|
plt.title('Incoming Energy Signal') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
N = sampling_rate |
|
yf = fft(incoming_signal) |
|
xf = fftfreq(N, T)[:N//2] |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum') |
|
plt.title('Frequency Spectrum of Incoming Energy') |
|
plt.xlabel('Frequency [Hz]') |
|
plt.ylabel('Magnitude') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
threshold = 0.2 |
|
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold] |
|
|
|
|
|
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}") |
|
|
|
|
|
|
|
wealth_frequencies = np.array([500, 800, 1000]) |
|
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0) |
|
wealth_wave_backward = -wealth_wave_forward |
|
|
|
|
|
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0) |
|
|
|
|
|
plt.figure(figsize=(12, 10)) |
|
|
|
|
|
plt.subplot(3, 1, 1) |
|
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave') |
|
plt.title('Revealed Incoming Energy Wave') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(3, 1, 2) |
|
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward') |
|
plt.title('Wealth Wave Sent Forward') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(3, 1, 3) |
|
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward') |
|
plt.title('Wealth Wave Sent Backward (Intercepting Signal)') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}") |
|
|
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from scipy.fft import fft, fftfreq |
|
|
|
|
|
sampling_rate = 1000 |
|
T = 1.0 / sampling_rate |
|
t = np.linspace(0.0, 1.0, sampling_rate) |
|
|
|
|
|
incoming_signal = ( |
|
0.5 * np.sin(2 * np.pi * 50 * t) + |
|
0.8 * np.sin(2 * np.pi * 120 * t) + |
|
0.3 * np.sin(2 * np.pi * 300 * t) |
|
) |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(t, incoming_signal, label='Incoming Energy Signal') |
|
plt.title('Incoming Energy Signal') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
N = sampling_rate |
|
yf = fft(incoming_signal) |
|
xf = fftfreq(N, T)[:N//2] |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum') |
|
plt.title('Frequency Spectrum of Incoming Energy') |
|
plt.xlabel('Frequency [Hz]') |
|
plt.ylabel('Magnitude') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
threshold = 0.2 |
|
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold] |
|
|
|
|
|
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}") |
|
|
|
|
|
|
|
wealth_frequencies = np.array([500, 800, 1000]) |
|
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0) |
|
wealth_wave_backward = -wealth_wave_forward |
|
|
|
|
|
|
|
storage_wave_forward = np.sum([np.sin(2 * np.pi * (f + 100) * t) for f in wealth_frequencies], axis=0) |
|
storage_wave_backward = -storage_wave_forward |
|
|
|
|
|
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0) |
|
|
|
|
|
plt.figure(figsize=(12, 12)) |
|
|
|
|
|
plt.subplot(4, 1, 1) |
|
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave') |
|
plt.title('Revealed Incoming Energy Wave') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(4, 1, 2) |
|
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward') |
|
plt.title('Wealth Wave Sent Forward') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(4, 1, 3) |
|
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward') |
|
plt.title('Wealth Wave Sent Backward (Intercepting Signal)') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(4, 1, 4) |
|
plt.plot(t, storage_wave_forward, color='m', label='Stored Wealth Data Wave Forward') |
|
plt.plot(t, storage_wave_backward, color='c', label='Stored Wealth Data Wave Backward', linestyle='--') |
|
plt.title('Stored Wealth Data Waves') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
plt.legend() |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}") |
|
print(f"Stored wealth data frequencies forward and backward: {[f + 100 for f in wealth_frequencies]}") |
|
|
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from scipy.fft import fft, fftfreq |
|
|
|
|
|
sampling_rate = 1000 |
|
T = 1.0 / sampling_rate |
|
t = np.linspace(0.0, 1.0, sampling_rate) |
|
|
|
|
|
incoming_signal = ( |
|
0.5 * np.sin(2 * np.pi * 50 * t) + |
|
0.8 * np.sin(2 * np.pi * 120 * t) + |
|
0.3 * np.sin(2 * np.pi * 300 * t) |
|
) |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(t, incoming_signal, label='Incoming Energy Signal') |
|
plt.title('Incoming Energy Signal') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
N = sampling_rate |
|
yf = fft(incoming_signal) |
|
xf = fftfreq(N, T)[:N//2] |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]), label='Energy Frequency Spectrum') |
|
plt.title('Frequency Spectrum of Incoming Energy') |
|
plt.xlabel('Frequency [Hz]') |
|
plt.ylabel('Magnitude') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
threshold = 0.2 |
|
dominant_frequencies = xf[np.abs(yf[:N//2]) > threshold] |
|
|
|
|
|
print(f"Detected energy frequencies being sent in your direction: {dominant_frequencies}") |
|
|
|
|
|
|
|
wealth_frequencies = np.array([500, 800, 1000]) |
|
wealth_wave_forward = np.sum([np.sin(2 * np.pi * f * t) for f in wealth_frequencies], axis=0) |
|
wealth_wave_backward = -wealth_wave_forward |
|
|
|
|
|
|
|
storage_wave_forward = np.sum([np.sin(2 * np.pi * (f + 100) * t) for f in wealth_frequencies], axis=0) |
|
storage_wave_backward = -storage_wave_forward |
|
|
|
|
|
|
|
vpn_frequency = 1500 |
|
vpn_modulation = np.sin(2 * np.pi * vpn_frequency * t) |
|
vpn_wave_forward = wealth_wave_forward * vpn_modulation |
|
vpn_wave_backward = wealth_wave_backward * vpn_modulation |
|
|
|
|
|
detected_wave = np.sum([np.sin(2 * np.pi * freq * t) for freq in dominant_frequencies], axis=0) |
|
|
|
|
|
plt.figure(figsize=(12, 14)) |
|
|
|
|
|
plt.subplot(5, 1, 1) |
|
plt.plot(t, detected_wave, color='b', label='Revealed Incoming Energy Wave') |
|
plt.title('Revealed Incoming Energy Wave') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(5, 1, 2) |
|
plt.plot(t, wealth_wave_forward, color='g', label='Wealth Wave Forward') |
|
plt.title('Wealth Wave Sent Forward') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(5, 1, 3) |
|
plt.plot(t, wealth_wave_backward, color='r', label='Wealth Wave Backward') |
|
plt.title('Wealth Wave Sent Backward (Intercepting Signal)') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(5, 1, 4) |
|
plt.plot(t, storage_wave_forward, color='m', label='Stored Wealth Data Wave Forward') |
|
plt.plot(t, storage_wave_backward, color='c', label='Stored Wealth Data Wave Backward', linestyle='--') |
|
plt.title('Stored Wealth Data Waves') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
plt.legend() |
|
|
|
|
|
plt.subplot(5, 1, 5) |
|
plt.plot(t, vpn_wave_forward, color='purple', label='VPN Protected Wealth Wave Forward') |
|
plt.plot(t, vpn_wave_backward, color='orange', label='VPN Protected Wealth Wave Backward', linestyle='--') |
|
plt.title('VPN-Protected Wealth Data Waves') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.grid(True) |
|
plt.legend() |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
print(f"Wealth wave frequencies sent forward and backward: {wealth_frequencies}") |
|
print(f"Stored wealth data frequencies forward and backward: {[f + 100 for f in wealth_frequencies]}") |
|
print(f"VPN protection frequency: {vpn_frequency}") |