File size: 9,250 Bytes
344f1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# -*- coding: utf-8 -*-
"""SecureWealth Transmittor

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1bRloWQX62u7zc3Bzev_Lg_yNfqOYOZ7t
"""

import torch
import torch.nn as nn

# Define a simple neural network to generate random frequencies
class FrequencyMaskingNet(nn.Module):
    def __init__(self, input_size=1, hidden_size=64, output_size=1):
        super(FrequencyMaskingNet, self).__init__()

        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, output_size)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
    # Convert the IP address (dummy) into tensor format
    ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)

    # Create a list to store frequency signals
    frequencies = []

    # Iterate and generate frequencies using the neural network
    for _ in range(iterations):
        # Generate a masked frequency
        frequency = model(ip_tensor)
        frequencies.append(frequency.item())

    return frequencies

# Initialize the neural network
model = FrequencyMaskingNet()

# Example IP address to be masked (as a float for simplicity, convert if needed)
ip_address = 192.168  # Example, could use a different encoding for real IPs

# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)

print(masked_frequencies)

import torch
import torch.nn as nn
import matplotlib.pyplot as plt

# Define the neural network for generating pseudo-random frequencies
class FrequencyMaskingNet(nn.Module):
    def __init__(self, input_size=1, hidden_size=64, output_size=1):
        super(FrequencyMaskingNet, self).__init__()

        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, output_size)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
    # Convert the IP address (dummy) into tensor format
    ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)

    # Create a list to store frequency signals
    frequencies = []

    # Iterate and generate frequencies using the neural network
    for _ in range(iterations):
        # Generate a masked frequency
        frequency = model(ip_tensor)
        frequencies.append(frequency.item())

    return frequencies

# Function to visualize frequencies as a waveform
def plot_frequencies(frequencies):
    plt.figure(figsize=(10, 4))
    plt.plot(frequencies, color='b', label="Masked Frequencies")
    plt.title("Generated Frequency Waveform for IP Masking")
    plt.xlabel("Iterations")
    plt.ylabel("Frequency Amplitude")
    plt.grid(True)
    plt.legend()
    plt.show()

# Initialize the neural network
model = FrequencyMaskingNet()

# Example IP address to be masked (as a float for simplicity)
ip_address = 192.168  # Example, you can encode the IP better in practice

# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)

# Visualize the generated frequencies as a waveform
plot_frequencies(masked_frequencies)

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np

# Define the neural network for generating pseudo-random frequencies
class FrequencyMaskingNet(nn.Module):
    def __init__(self, input_size=1, hidden_size=64, output_size=1):
        super(FrequencyMaskingNet, self).__init__()

        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, output_size)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
    ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
    frequencies = []

    for _ in range(iterations):
        frequency = model(ip_tensor)
        frequencies.append(frequency.item())

    return frequencies

# Function to generate a wealth signal that transmits in the direction of energy (e.g., linear increase)
def generate_wealth_signal(iterations=100):
    # Simulate wealth signal as a sine wave with increasing amplitude (simulating directional energy)
    time = np.linspace(0, 10, iterations)
    wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations)  # Amplitude increases over time
    return wealth_signal

# Function to visualize frequencies as a waveform
def plot_frequencies(frequencies, wealth_signal):
    plt.figure(figsize=(10, 4))
    plt.plot(frequencies, color='b', label="Masked Frequencies")
    plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
    plt.title("Generated Frequency Waveform with Wealth Signal")
    plt.xlabel("Iterations")
    plt.ylabel("Amplitude")
    plt.grid(True)
    plt.legend()
    plt.show()

# Initialize the neural network
model = FrequencyMaskingNet()

# Example IP address to be masked (as a float for simplicity)
ip_address = 192.168

# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)

# Generate a wealth signal that grows in the direction of energy
wealth_signal = generate_wealth_signal(len(masked_frequencies))

# Visualize the generated frequencies and wealth signal
plot_frequencies(masked_frequencies, wealth_signal)

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np

# Define the neural network for generating pseudo-random frequencies
class FrequencyMaskingNet(nn.Module):
    def __init__(self, input_size=1, hidden_size=64, output_size=1):
        super(FrequencyMaskingNet, self).__init__()

        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, output_size)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
    ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
    frequencies = []

    for _ in range(iterations):
        frequency = model(ip_tensor)
        frequencies.append(frequency.item())

    return frequencies

# Function to generate a wealth signal that transmits in the direction of energy
def generate_wealth_signal(iterations=100):
    time = np.linspace(0, 10, iterations)
    wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations)  # Amplitude increases over time
    return wealth_signal

# Function to generate a dense encryption waveform
def generate_encryption_waveform(iterations=100):
    time = np.linspace(0, 10, iterations)
    # Dense waveform with higher frequency and random noise for encryption
    encryption_signal = np.sin(10 * np.pi * time) + 0.2 * np.random.randn(iterations)
    return encryption_signal

# Function to visualize frequencies, wealth signal, and encryption
def plot_frequencies(frequencies, wealth_signal, encryption_signal, target_reached_index):
    plt.figure(figsize=(10, 4))

    # Plot masked frequencies
    plt.plot(frequencies, color='b', label="Masked Frequencies")

    # Plot wealth signal
    plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")

    # Add encryption signal at target point
    plt.plot(range(target_reached_index, target_reached_index + len(encryption_signal)),
             encryption_signal, color='r', linestyle='-', label="Encrypted Wealth Data", linewidth=2)

    plt.title("SecureWealth Transmittor")
    plt.xlabel("Iterations")
    plt.ylabel("Amplitude")
    plt.grid(True)
    plt.legend()
    plt.show()

# Initialize the neural network
model = FrequencyMaskingNet()

# Example IP address to be masked (as a float for simplicity)
ip_address = 192.168

# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)

# Generate a wealth signal that grows in the direction of energy
wealth_signal = generate_wealth_signal(len(masked_frequencies))

# Determine where the wealth signal reaches its target (e.g., at its peak)
target_reached_index = np.argmax(wealth_signal)

# Generate dense encryption waveform once the wealth signal reaches its target
encryption_signal = generate_encryption_waveform(len(masked_frequencies) - target_reached_index)

# Visualize the generated frequencies, wealth signal, and encryption signal
plot_frequencies(masked_frequencies, wealth_signal, encryption_signal, target_reached_index)