File size: 9,051 Bytes
344f1b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import torch
import torch.nn as nn
# Define a simple neural network to generate random frequencies
class FrequencyMaskingNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(FrequencyMaskingNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
# Convert the IP address (dummy) into tensor format
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
# Create a list to store frequency signals
frequencies = []
# Iterate and generate frequencies using the neural network
for _ in range(iterations):
# Generate a masked frequency
frequency = model(ip_tensor)
frequencies.append(frequency.item())
return frequencies
# Initialize the neural network
model = FrequencyMaskingNet()
# Example IP address to be masked (as a float for simplicity, convert if needed)
ip_address = 192.168 # Example, could use a different encoding for real IPs
# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)
print(masked_frequencies)
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
# Define the neural network for generating pseudo-random frequencies
class FrequencyMaskingNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(FrequencyMaskingNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
# Convert the IP address (dummy) into tensor format
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
# Create a list to store frequency signals
frequencies = []
# Iterate and generate frequencies using the neural network
for _ in range(iterations):
# Generate a masked frequency
frequency = model(ip_tensor)
frequencies.append(frequency.item())
return frequencies
# Function to visualize frequencies as a waveform
def plot_frequencies(frequencies):
plt.figure(figsize=(10, 4))
plt.plot(frequencies, color='b', label="Masked Frequencies")
plt.title("Generated Frequency Waveform for IP Masking")
plt.xlabel("Iterations")
plt.ylabel("Frequency Amplitude")
plt.grid(True)
plt.legend()
plt.show()
# Initialize the neural network
model = FrequencyMaskingNet()
# Example IP address to be masked (as a float for simplicity)
ip_address = 192.168 # Example, you can encode the IP better in practice
# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)
# Visualize the generated frequencies as a waveform
plot_frequencies(masked_frequencies)
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
# Define the neural network for generating pseudo-random frequencies
class FrequencyMaskingNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(FrequencyMaskingNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
frequencies = []
for _ in range(iterations):
frequency = model(ip_tensor)
frequencies.append(frequency.item())
return frequencies
# Function to generate a wealth signal that transmits in the direction of energy (e.g., linear increase)
def generate_wealth_signal(iterations=100):
# Simulate wealth signal as a sine wave with increasing amplitude (simulating directional energy)
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
return wealth_signal
# Function to visualize frequencies as a waveform
def plot_frequencies(frequencies, wealth_signal):
plt.figure(figsize=(10, 4))
plt.plot(frequencies, color='b', label="Masked Frequencies")
plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
plt.title("Generated Frequency Waveform with Wealth Signal")
plt.xlabel("Iterations")
plt.ylabel("Amplitude")
plt.grid(True)
plt.legend()
plt.show()
# Initialize the neural network
model = FrequencyMaskingNet()
# Example IP address to be masked (as a float for simplicity)
ip_address = 192.168
# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)
# Generate a wealth signal that grows in the direction of energy
wealth_signal = generate_wealth_signal(len(masked_frequencies))
# Visualize the generated frequencies and wealth signal
plot_frequencies(masked_frequencies, wealth_signal)
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
# Define the neural network for generating pseudo-random frequencies
class FrequencyMaskingNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(FrequencyMaskingNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
frequencies = []
for _ in range(iterations):
frequency = model(ip_tensor)
frequencies.append(frequency.item())
return frequencies
# Function to generate a wealth signal that transmits in the direction of energy
def generate_wealth_signal(iterations=100):
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
return wealth_signal
# Function to generate a dense encryption waveform
def generate_encryption_waveform(iterations=100):
time = np.linspace(0, 10, iterations)
# Dense waveform with higher frequency and random noise for encryption
encryption_signal = np.sin(10 * np.pi * time) + 0.2 * np.random.randn(iterations)
return encryption_signal
# Function to visualize frequencies, wealth signal, and encryption
def plot_frequencies(frequencies, wealth_signal, encryption_signal, target_reached_index):
plt.figure(figsize=(10, 4))
# Plot masked frequencies
plt.plot(frequencies, color='b', label="Masked Frequencies")
# Plot wealth signal
plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
# Add encryption signal at target point
plt.plot(range(target_reached_index, target_reached_index + len(encryption_signal)),
encryption_signal, color='r', linestyle='-', label="Encrypted Wealth Data", linewidth=2)
plt.title("SecureWealth Transmittor")
plt.xlabel("Iterations")
plt.ylabel("Amplitude")
plt.grid(True)
plt.legend()
plt.show()
# Initialize the neural network
model = FrequencyMaskingNet()
# Example IP address to be masked (as a float for simplicity)
ip_address = 192.168
# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)
# Generate a wealth signal that grows in the direction of energy
wealth_signal = generate_wealth_signal(len(masked_frequencies))
# Determine where the wealth signal reaches its target (e.g., at its peak)
target_reached_index = np.argmax(wealth_signal)
# Generate dense encryption waveform once the wealth signal reaches its target
encryption_signal = generate_encryption_waveform(len(masked_frequencies) - target_reached_index)
# Visualize the generated frequencies, wealth signal, and encryption signal
plot_frequencies(masked_frequencies, wealth_signal, encryption_signal, target_reached_index) |