SecureWealthTransmittor / securewealth_transmittor.py
antitheft159's picture
Upload 2 files
344f1b1 verified
raw
history blame
9.25 kB
# -*- coding: utf-8 -*-
"""SecureWealth Transmittor
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1bRloWQX62u7zc3Bzev_Lg_yNfqOYOZ7t
"""
import torch
import torch.nn as nn
# Define a simple neural network to generate random frequencies
class FrequencyMaskingNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(FrequencyMaskingNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
# Convert the IP address (dummy) into tensor format
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
# Create a list to store frequency signals
frequencies = []
# Iterate and generate frequencies using the neural network
for _ in range(iterations):
# Generate a masked frequency
frequency = model(ip_tensor)
frequencies.append(frequency.item())
return frequencies
# Initialize the neural network
model = FrequencyMaskingNet()
# Example IP address to be masked (as a float for simplicity, convert if needed)
ip_address = 192.168 # Example, could use a different encoding for real IPs
# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)
print(masked_frequencies)
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
# Define the neural network for generating pseudo-random frequencies
class FrequencyMaskingNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(FrequencyMaskingNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
# Convert the IP address (dummy) into tensor format
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
# Create a list to store frequency signals
frequencies = []
# Iterate and generate frequencies using the neural network
for _ in range(iterations):
# Generate a masked frequency
frequency = model(ip_tensor)
frequencies.append(frequency.item())
return frequencies
# Function to visualize frequencies as a waveform
def plot_frequencies(frequencies):
plt.figure(figsize=(10, 4))
plt.plot(frequencies, color='b', label="Masked Frequencies")
plt.title("Generated Frequency Waveform for IP Masking")
plt.xlabel("Iterations")
plt.ylabel("Frequency Amplitude")
plt.grid(True)
plt.legend()
plt.show()
# Initialize the neural network
model = FrequencyMaskingNet()
# Example IP address to be masked (as a float for simplicity)
ip_address = 192.168 # Example, you can encode the IP better in practice
# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)
# Visualize the generated frequencies as a waveform
plot_frequencies(masked_frequencies)
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
# Define the neural network for generating pseudo-random frequencies
class FrequencyMaskingNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(FrequencyMaskingNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
frequencies = []
for _ in range(iterations):
frequency = model(ip_tensor)
frequencies.append(frequency.item())
return frequencies
# Function to generate a wealth signal that transmits in the direction of energy (e.g., linear increase)
def generate_wealth_signal(iterations=100):
# Simulate wealth signal as a sine wave with increasing amplitude (simulating directional energy)
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
return wealth_signal
# Function to visualize frequencies as a waveform
def plot_frequencies(frequencies, wealth_signal):
plt.figure(figsize=(10, 4))
plt.plot(frequencies, color='b', label="Masked Frequencies")
plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
plt.title("Generated Frequency Waveform with Wealth Signal")
plt.xlabel("Iterations")
plt.ylabel("Amplitude")
plt.grid(True)
plt.legend()
plt.show()
# Initialize the neural network
model = FrequencyMaskingNet()
# Example IP address to be masked (as a float for simplicity)
ip_address = 192.168
# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)
# Generate a wealth signal that grows in the direction of energy
wealth_signal = generate_wealth_signal(len(masked_frequencies))
# Visualize the generated frequencies and wealth signal
plot_frequencies(masked_frequencies, wealth_signal)
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
# Define the neural network for generating pseudo-random frequencies
class FrequencyMaskingNet(nn.Module):
def __init__(self, input_size=1, hidden_size=64, output_size=1):
super(FrequencyMaskingNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Function to create random frequencies to mask IP data
def generate_frequencies(ip, model, iterations=100):
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
frequencies = []
for _ in range(iterations):
frequency = model(ip_tensor)
frequencies.append(frequency.item())
return frequencies
# Function to generate a wealth signal that transmits in the direction of energy
def generate_wealth_signal(iterations=100):
time = np.linspace(0, 10, iterations)
wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
return wealth_signal
# Function to generate a dense encryption waveform
def generate_encryption_waveform(iterations=100):
time = np.linspace(0, 10, iterations)
# Dense waveform with higher frequency and random noise for encryption
encryption_signal = np.sin(10 * np.pi * time) + 0.2 * np.random.randn(iterations)
return encryption_signal
# Function to visualize frequencies, wealth signal, and encryption
def plot_frequencies(frequencies, wealth_signal, encryption_signal, target_reached_index):
plt.figure(figsize=(10, 4))
# Plot masked frequencies
plt.plot(frequencies, color='b', label="Masked Frequencies")
# Plot wealth signal
plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
# Add encryption signal at target point
plt.plot(range(target_reached_index, target_reached_index + len(encryption_signal)),
encryption_signal, color='r', linestyle='-', label="Encrypted Wealth Data", linewidth=2)
plt.title("SecureWealth Transmittor")
plt.xlabel("Iterations")
plt.ylabel("Amplitude")
plt.grid(True)
plt.legend()
plt.show()
# Initialize the neural network
model = FrequencyMaskingNet()
# Example IP address to be masked (as a float for simplicity)
ip_address = 192.168
# Generate pseudo-random frequencies to mask the IP
masked_frequencies = generate_frequencies(ip_address, model)
# Generate a wealth signal that grows in the direction of energy
wealth_signal = generate_wealth_signal(len(masked_frequencies))
# Determine where the wealth signal reaches its target (e.g., at its peak)
target_reached_index = np.argmax(wealth_signal)
# Generate dense encryption waveform once the wealth signal reaches its target
encryption_signal = generate_encryption_waveform(len(masked_frequencies) - target_reached_index)
# Visualize the generated frequencies, wealth signal, and encryption signal
plot_frequencies(masked_frequencies, wealth_signal, encryption_signal, target_reached_index)