Edit model card

xtreme_s_xlsr_minds14

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the GOOGLE/XTREME_S - MINDS14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2890
  • F1: 0.9474
  • Accuracy: 0.9470

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
2.551 2.7 200 2.5855 0.0407 0.1201
1.6934 5.41 400 1.5072 0.5862 0.6085
0.5914 8.11 600 0.7274 0.8270 0.8232
0.3896 10.81 800 0.4402 0.8905 0.8890
0.5052 13.51 1000 0.4483 0.8837 0.8829
0.4806 16.22 1200 0.4981 0.8784 0.8787
0.2103 18.92 1400 0.4957 0.8810 0.8817
0.4198 21.62 1600 0.5161 0.8927 0.8921
0.11 24.32 1800 0.4456 0.8923 0.8902
0.1233 27.03 2000 0.3858 0.9016 0.9012
0.1827 29.73 2200 0.3765 0.9162 0.9159
0.1235 32.43 2400 0.3716 0.9134 0.9128
0.1873 35.14 2600 0.3080 0.9314 0.9311
0.017 37.84 2800 0.2629 0.9415 0.9409
0.0436 40.54 3000 0.3159 0.9397 0.9390
0.0455 43.24 3200 0.2963 0.9393 0.9390
0.046 45.95 3400 0.2914 0.9457 0.9451
0.0042 48.65 3600 0.2890 0.9474 0.9470

Framework versions

  • Transformers 4.18.0.dev0
  • Pytorch 1.10.2+cu113
  • Datasets 1.18.4.dev0
  • Tokenizers 0.11.6
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.