|
--- |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- google/xtreme_s |
|
- generated_from_trainer |
|
datasets: |
|
- google/xtreme_s |
|
model-index: |
|
- name: xtreme_s_xlsr_mls |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xtreme_s_xlsr_300m_mls |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MLS dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6215 |
|
- Wer: 0.3033 |
|
- Cer: 0.0951 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 3000 |
|
- num_epochs: 100.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 3.0446 | 1.91 | 500 | 2.9866 | 1.0 | 1.0 | |
|
| 0.8789 | 3.82 | 1000 | 0.8574 | 0.7225 | 0.2355 | |
|
| 0.4766 | 5.72 | 1500 | 0.4813 | 0.4624 | 0.1394 | |
|
| 0.3779 | 7.63 | 2000 | 0.4465 | 0.4154 | 0.1309 | |
|
| 0.3244 | 9.54 | 2500 | 0.4213 | 0.3683 | 0.1163 | |
|
| 0.346 | 11.45 | 3000 | 0.4606 | 0.4033 | 0.1299 | |
|
| 0.3092 | 13.36 | 3500 | 0.4160 | 0.3585 | 0.1115 | |
|
| 0.3287 | 15.27 | 4000 | 0.4364 | 0.3631 | 0.1165 | |
|
| 0.3165 | 17.18 | 4500 | 0.4218 | 0.3451 | 0.1056 | |
|
| 0.2874 | 19.08 | 5000 | 0.4583 | 0.3650 | 0.1151 | |
|
| 0.3089 | 20.99 | 5500 | 0.4424 | 0.3485 | 0.1137 | |
|
| 0.2689 | 22.9 | 6000 | 0.4427 | 0.3542 | 0.1128 | |
|
| 0.234 | 24.81 | 6500 | 0.4204 | 0.3431 | 0.1069 | |
|
| 0.2363 | 26.72 | 7000 | 0.4792 | 0.3689 | 0.1191 | |
|
| 0.2796 | 28.62 | 7500 | 0.4867 | 0.3662 | 0.1154 | |
|
| 0.2447 | 30.53 | 8000 | 0.4908 | 0.3584 | 0.1160 | |
|
| 0.22 | 32.44 | 8500 | 0.5315 | 0.3626 | 0.1240 | |
|
| 0.1961 | 34.35 | 9000 | 0.5121 | 0.3610 | 0.1168 | |
|
| 0.1959 | 36.26 | 9500 | 0.5140 | 0.3648 | 0.1179 | |
|
| 0.1748 | 38.17 | 10000 | 0.5464 | 0.3763 | 0.1206 | |
|
| 0.197 | 40.08 | 10500 | 0.5199 | 0.3515 | 0.1128 | |
|
| 0.2166 | 41.98 | 11000 | 0.5336 | 0.3607 | 0.1191 | |
|
| 0.2078 | 43.89 | 11500 | 0.5389 | 0.3518 | 0.1136 | |
|
| 0.1827 | 45.8 | 12000 | 0.5014 | 0.3287 | 0.1053 | |
|
| 0.1783 | 47.71 | 12500 | 0.5408 | 0.3545 | 0.1121 | |
|
| 0.1489 | 49.62 | 13000 | 0.5292 | 0.3472 | 0.1098 | |
|
| 0.1665 | 51.53 | 13500 | 0.5052 | 0.3300 | 0.1033 | |
|
| 0.1631 | 53.43 | 14000 | 0.5241 | 0.3362 | 0.1081 | |
|
| 0.1943 | 55.34 | 14500 | 0.5453 | 0.3373 | 0.1076 | |
|
| 0.1504 | 57.25 | 15000 | 0.5958 | 0.3594 | 0.1149 | |
|
| 0.136 | 59.16 | 15500 | 0.5645 | 0.3367 | 0.1082 | |
|
| 0.1224 | 61.07 | 16000 | 0.5322 | 0.3302 | 0.1039 | |
|
| 0.1156 | 62.98 | 16500 | 0.5728 | 0.3332 | 0.1061 | |
|
| 0.114 | 64.88 | 17000 | 0.5994 | 0.3410 | 0.1125 | |
|
| 0.1445 | 66.79 | 17500 | 0.6048 | 0.3471 | 0.1098 | |
|
| 0.1281 | 68.7 | 18000 | 0.5747 | 0.3278 | 0.1042 | |
|
| 0.1233 | 70.61 | 18500 | 0.6021 | 0.3375 | 0.1082 | |
|
| 0.1109 | 72.52 | 19000 | 0.5851 | 0.3188 | 0.1021 | |
|
| 0.0943 | 74.43 | 19500 | 0.5944 | 0.3238 | 0.1033 | |
|
| 0.1418 | 76.34 | 20000 | 0.5904 | 0.3143 | 0.0997 | |
|
| 0.1317 | 78.24 | 20500 | 0.6291 | 0.3283 | 0.1047 | |
|
| 0.1177 | 80.15 | 21000 | 0.6114 | 0.3190 | 0.1000 | |
|
| 0.1138 | 82.06 | 21500 | 0.6155 | 0.3245 | 0.1023 | |
|
| 0.1074 | 83.97 | 22000 | 0.6094 | 0.3153 | 0.1004 | |
|
| 0.11 | 85.88 | 22500 | 0.6041 | 0.3141 | 0.0988 | |
|
| 0.1096 | 87.78 | 23000 | 0.6243 | 0.3110 | 0.0986 | |
|
| 0.1017 | 89.69 | 23500 | 0.6110 | 0.3121 | 0.0984 | |
|
| 0.1015 | 91.6 | 24000 | 0.6385 | 0.3093 | 0.0978 | |
|
| 0.0952 | 93.51 | 24500 | 0.6155 | 0.3036 | 0.0953 | |
|
| 0.0896 | 95.42 | 25000 | 0.6215 | 0.3033 | 0.0951 | |
|
| 0.0953 | 97.33 | 25500 | 0.6293 | 0.3037 | 0.0953 | |
|
| 0.0834 | 99.24 | 26000 | 0.6302 | 0.3036 | 0.0952 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0.dev0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 1.18.4.dev0 |
|
- Tokenizers 0.11.6 |
|
|