|
--- |
|
library_name: transformers |
|
base_model: FacebookAI/xlm-roberta-large-finetuned-conll03-english |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-large-finetuned-conll03-english-finetuned-ner-biomedical-spanish |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-large-finetuned-conll03-english-finetuned-ner-biomedical-spanish |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1526 |
|
- Precision: 0.8568 |
|
- Recall: 0.8258 |
|
- F1: 0.8410 |
|
- Accuracy: 0.9542 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 379 | 0.8877 | 0.5421 | 0.4232 | 0.4754 | 0.7697 | |
|
| 0.8712 | 2.0 | 758 | 0.7159 | 0.5625 | 0.4761 | 0.5157 | 0.8265 | |
|
| 0.1507 | 3.0 | 1137 | 0.4917 | 0.6528 | 0.5265 | 0.5829 | 0.8724 | |
|
| 0.0984 | 4.0 | 1516 | 0.3969 | 0.7123 | 0.6516 | 0.6806 | 0.9005 | |
|
| 0.0984 | 5.0 | 1895 | 0.3112 | 0.7463 | 0.6452 | 0.6920 | 0.9090 | |
|
| 0.0732 | 6.0 | 2274 | 0.2653 | 0.8166 | 0.7239 | 0.7674 | 0.9299 | |
|
| 0.0561 | 7.0 | 2653 | 0.2200 | 0.8006 | 0.7148 | 0.7553 | 0.9308 | |
|
| 0.0465 | 8.0 | 3032 | 0.1590 | 0.8451 | 0.7884 | 0.8158 | 0.9485 | |
|
| 0.0465 | 9.0 | 3411 | 0.1526 | 0.8568 | 0.8258 | 0.8410 | 0.9542 | |
|
| 0.0396 | 10.0 | 3790 | 0.1494 | 0.8493 | 0.8142 | 0.8314 | 0.9526 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|