apetrenko's picture
Upload . with huggingface_hub
f25e361
[2023-01-11 19:27:33,824][2153185] Saving configuration to ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/config.json...
[2023-01-11 19:27:34,003][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-01-11 19:27:34,005][2153185] Rollout worker 0 uses device cuda:0
[2023-01-11 19:27:34,006][2153185] In synchronous mode, we only accumulate one batch. Setting num_batches_to_accumulate to 1
[2023-01-11 19:27:34,067][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-01-11 19:27:34,068][2153185] InferenceWorker_p0-w0: min num requests: 1
[2023-01-11 19:27:34,069][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-01-11 19:27:34,070][2153185] WARNING! It is generally recommended to enable Fixed KL loss (https://arxiv.org/pdf/1707.06347.pdf) for continuous action tasks to avoid potential numerical issues. I.e. set --kl_loss_coeff=0.1
[2023-01-11 19:27:34,070][2153185] Setting fixed seed 2322090
[2023-01-11 19:27:34,071][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-01-11 19:27:34,071][2153185] Initializing actor-critic model on device cuda:0
[2023-01-11 19:27:34,072][2153185] RunningMeanStd input shape: (17,)
[2023-01-11 19:27:34,072][2153185] RunningMeanStd input shape: (1,)
[2023-01-11 19:27:34,154][2153185] Created Actor Critic model with architecture:
[2023-01-11 19:27:34,154][2153185] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): MultiInputEncoder(
(encoders): ModuleDict(
(obs): MlpEncoder(
(mlp_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Linear)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Linear)
(5): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreIdentity()
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=64, out_features=1, bias=True)
(action_parameterization): ActionParameterizationContinuousNonAdaptiveStddev(
(distribution_linear): Linear(in_features=64, out_features=6, bias=True)
)
)
[2023-01-11 19:27:34,156][2153185] Using optimizer <class 'torch.optim.adam.Adam'>
[2023-01-11 19:27:34,159][2153185] No checkpoints found
[2023-01-11 19:27:34,160][2153185] Did not load from checkpoint, starting from scratch!
[2023-01-11 19:27:34,161][2153185] Initialized policy 0 weights for model version 0
[2023-01-11 19:27:34,161][2153185] LearnerWorker_p0 finished initialization!
[2023-01-11 19:27:34,162][2153185] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-01-11 19:27:34,167][2153185] Inference worker 0-0 is ready!
[2023-01-11 19:27:34,167][2153185] All inference workers are ready! Signal rollout workers to start!
[2023-01-11 19:27:34,168][2153185] EnvRunner 0-0 uses policy 0
[2023-01-11 19:27:35,507][2153185] Resetting env <VectorGymWrapper instance> with 2048 parallel agents...
[2023-01-11 19:27:38,375][2153185] reset() done, obs.shape=torch.Size([2048, 17])!
[2023-01-11 19:27:47,676][2153185] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 2048. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-01-11 19:27:56,420][2153185] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 2048. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-01-11 19:27:56,424][2153185] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 234.1. Samples: 4096. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-01-11 19:27:56,429][2153185] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 468.0. Samples: 6144. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-01-11 19:27:56,432][2153185] Heartbeat connected on Batcher_0
[2023-01-11 19:27:56,432][2153185] Heartbeat connected on LearnerWorker_p0
[2023-01-11 19:27:56,432][2153185] Heartbeat connected on InferenceWorker_p0-w0
[2023-01-11 19:27:56,432][2153185] Heartbeat connected on RolloutWorker_w0
[2023-01-11 19:27:58,473][2153185] Fps is (10 sec: 127937.9, 60 sec: 24280.7, 300 sec: 24280.7). Total num frames: 262144. Throughput: 0: 15365.1. Samples: 167936. Policy #0 lag: (min: 2.0, avg: 2.0, max: 2.0)
[2023-01-11 19:27:58,474][2153185] Avg episode reward: [(0, '23.990')]
[2023-01-11 19:28:03,423][2153185] Fps is (10 sec: 318590.1, 60 sec: 141502.0, 300 sec: 141502.0). Total num frames: 2228224. Throughput: 0: 87268.2. Samples: 1376256. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:28:03,424][2153185] Avg episode reward: [(0, '618.064')]
[2023-01-11 19:28:08,424][2153185] Fps is (10 sec: 381986.4, 60 sec: 195844.4, 300 sec: 195844.4). Total num frames: 4063232. Throughput: 0: 174917.4. Samples: 3631104. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:28:08,425][2153185] Avg episode reward: [(0, '630.121')]
[2023-01-11 19:28:13,422][2153185] Fps is (10 sec: 367046.5, 60 sec: 229095.9, 300 sec: 229095.9). Total num frames: 5898240. Throughput: 0: 227027.7. Samples: 5847040. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:28:13,423][2153185] Avg episode reward: [(0, '783.157')]
[2023-01-11 19:28:13,483][2153185] Saving new best policy, reward=783.157!
[2023-01-11 19:28:18,424][2153185] Fps is (10 sec: 373558.6, 60 sec: 253642.4, 300 sec: 253642.4). Total num frames: 7798784. Throughput: 0: 227065.9. Samples: 6983680. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0)
[2023-01-11 19:28:18,424][2153185] Avg episode reward: [(0, '2312.752')]
[2023-01-11 19:28:18,432][2153185] Saving new best policy, reward=2312.752!
[2023-01-11 19:28:23,431][2153185] Fps is (10 sec: 379766.5, 60 sec: 271273.9, 300 sec: 271273.9). Total num frames: 9699328. Throughput: 0: 258386.1. Samples: 9240576. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
[2023-01-11 19:28:23,432][2153185] Avg episode reward: [(0, '2002.332')]
[2023-01-11 19:28:28,423][2153185] Fps is (10 sec: 373562.0, 60 sec: 283072.2, 300 sec: 283072.2). Total num frames: 11534336. Throughput: 0: 358297.9. Samples: 11468800. Policy #0 lag: (min: 5.0, avg: 5.0, max: 5.0)
[2023-01-11 19:28:28,424][2153185] Avg episode reward: [(0, '2368.916')]
[2023-01-11 19:28:28,429][2153185] Saving new best policy, reward=2368.916!
[2023-01-11 19:28:33,443][2153185] Fps is (10 sec: 373110.6, 60 sec: 293551.7, 300 sec: 293551.7). Total num frames: 13434880. Throughput: 0: 339901.9. Samples: 12587008. Policy #0 lag: (min: 5.0, avg: 5.0, max: 5.0)
[2023-01-11 19:28:33,444][2153185] Avg episode reward: [(0, '2996.578')]
[2023-01-11 19:28:33,446][2153185] Saving new best policy, reward=2996.578!
[2023-01-11 19:28:38,422][2153185] Fps is (10 sec: 373599.0, 60 sec: 300909.4, 300 sec: 300909.4). Total num frames: 15269888. Throughput: 0: 352559.6. Samples: 14811136. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0)
[2023-01-11 19:28:38,423][2153185] Avg episode reward: [(0, '3076.930')]
[2023-01-11 19:28:38,431][2153185] Saving new best policy, reward=3076.930!
[2023-01-11 19:28:43,424][2153185] Fps is (10 sec: 367721.8, 60 sec: 363906.9, 300 sec: 306830.4). Total num frames: 17104896. Throughput: 0: 375696.5. Samples: 17055744. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0)
[2023-01-11 19:28:43,424][2153185] Avg episode reward: [(0, '3859.353')]
[2023-01-11 19:28:43,428][2153185] Saving new best policy, reward=3859.353!
[2023-01-11 19:28:48,422][2153185] Fps is (10 sec: 373566.4, 60 sec: 365502.6, 300 sec: 312869.9). Total num frames: 19005440. Throughput: 0: 372839.0. Samples: 18153472. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:28:48,423][2153185] Avg episode reward: [(0, '3764.592')]
[2023-01-11 19:28:53,424][2153185] Fps is (10 sec: 373543.7, 60 sec: 365657.5, 300 sec: 316977.7). Total num frames: 20840448. Throughput: 0: 373417.6. Samples: 20434944. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:28:53,425][2153185] Avg episode reward: [(0, '4154.622')]
[2023-01-11 19:28:53,429][2153185] Saving new best policy, reward=4154.622!
[2023-01-11 19:28:58,456][2153185] Fps is (10 sec: 372296.1, 60 sec: 374754.2, 300 sec: 321294.3). Total num frames: 22740992. Throughput: 0: 373094.6. Samples: 22648832. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:28:58,457][2153185] Avg episode reward: [(0, '4481.427')]
[2023-01-11 19:28:58,463][2153185] Saving new best policy, reward=4481.427!
[2023-01-11 19:29:03,470][2153185] Fps is (10 sec: 384889.5, 60 sec: 374357.4, 300 sec: 325979.1). Total num frames: 24707072. Throughput: 0: 373080.5. Samples: 23789568. Policy #0 lag: (min: 4.0, avg: 4.0, max: 4.0)
[2023-01-11 19:29:03,471][2153185] Avg episode reward: [(0, '4315.631')]
[2023-01-11 19:29:08,424][2153185] Fps is (10 sec: 381321.0, 60 sec: 374645.7, 300 sec: 328704.5). Total num frames: 26542080. Throughput: 0: 375071.6. Samples: 26116096. Policy #0 lag: (min: 4.0, avg: 4.0, max: 4.0)
[2023-01-11 19:29:08,425][2153185] Avg episode reward: [(0, '5075.545')]
[2023-01-11 19:29:08,433][2153185] Saving new best policy, reward=5075.545!
[2023-01-11 19:29:12,089][2153185] Early stopping after 3 epochs (6 sgd steps), loss delta 0.0000006
[2023-01-11 19:29:13,468][2153185] Fps is (10 sec: 380166.0, 60 sec: 376542.0, 300 sec: 332294.2). Total num frames: 28508160. Throughput: 0: 375819.4. Samples: 28397568. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0)
[2023-01-11 19:29:13,469][2153185] Avg episode reward: [(0, '4851.746')]
[2023-01-11 19:29:17,083][2153185] Early stopping after 5 epochs (10 sgd steps), loss delta 0.0000005
[2023-01-11 19:29:18,424][2153185] Fps is (10 sec: 380103.1, 60 sec: 375736.5, 300 sec: 334368.5). Total num frames: 30343168. Throughput: 0: 377264.1. Samples: 29556736. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0)
[2023-01-11 19:29:18,425][2153185] Avg episode reward: [(0, '3804.353')]
[2023-01-11 19:29:23,430][2153185] Fps is (10 sec: 374981.1, 60 sec: 375744.9, 300 sec: 336735.2). Total num frames: 32243712. Throughput: 0: 377128.2. Samples: 31784960. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:29:23,431][2153185] Avg episode reward: [(0, '4149.015')]
[2023-01-11 19:29:28,424][2153185] Fps is (10 sec: 373559.1, 60 sec: 375736.0, 300 sec: 338258.5). Total num frames: 34078720. Throughput: 0: 376827.7. Samples: 34013184. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:29:28,425][2153185] Avg episode reward: [(0, '4615.276')]
[2023-01-11 19:29:28,433][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000005196_34078720.pth...
[2023-01-11 19:29:33,423][2153185] Fps is (10 sec: 373832.6, 60 sec: 375866.1, 300 sec: 340240.8). Total num frames: 35979264. Throughput: 0: 377460.9. Samples: 35139584. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:29:33,424][2153185] Avg episode reward: [(0, '5411.330')]
[2023-01-11 19:29:33,427][2153185] Saving new best policy, reward=5411.330!
[2023-01-11 19:29:38,480][2153185] Fps is (10 sec: 378011.1, 60 sec: 376472.7, 300 sec: 341866.0). Total num frames: 37879808. Throughput: 0: 376411.6. Samples: 37394432. Policy #0 lag: (min: 6.0, avg: 6.0, max: 6.0)
[2023-01-11 19:29:38,480][2153185] Avg episode reward: [(0, '5203.336')]
[2023-01-11 19:29:43,422][2153185] Fps is (10 sec: 373588.1, 60 sec: 376841.2, 300 sec: 343121.6). Total num frames: 39714816. Throughput: 0: 378071.0. Samples: 39649280. Policy #0 lag: (min: 6.0, avg: 6.0, max: 6.0)
[2023-01-11 19:29:43,423][2153185] Avg episode reward: [(0, '5195.713')]
[2023-01-11 19:29:48,444][2153185] Fps is (10 sec: 374897.6, 60 sec: 376695.4, 300 sec: 344591.4). Total num frames: 41615360. Throughput: 0: 377415.6. Samples: 40763392. Policy #0 lag: (min: 3.0, avg: 3.0, max: 3.0)
[2023-01-11 19:29:48,444][2153185] Avg episode reward: [(0, '4986.651')]
[2023-01-11 19:29:53,424][2153185] Fps is (10 sec: 373487.3, 60 sec: 376831.7, 300 sec: 345536.9). Total num frames: 43450368. Throughput: 0: 375558.6. Samples: 43016192. Policy #0 lag: (min: 3.0, avg: 3.0, max: 3.0)
[2023-01-11 19:29:53,425][2153185] Avg episode reward: [(0, '5789.914')]
[2023-01-11 19:29:53,428][2153185] Saving new best policy, reward=5789.914!
[2023-01-11 19:29:58,424][2153185] Fps is (10 sec: 374311.5, 60 sec: 377034.7, 300 sec: 346859.9). Total num frames: 45350912. Throughput: 0: 375659.2. Samples: 45285376. Policy #0 lag: (min: 3.0, avg: 3.0, max: 3.0)
[2023-01-11 19:29:58,424][2153185] Avg episode reward: [(0, '5175.173')]
[2023-01-11 19:30:03,424][2153185] Fps is (10 sec: 373562.6, 60 sec: 374936.3, 300 sec: 347601.4). Total num frames: 47185920. Throughput: 0: 374287.2. Samples: 46399488. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:03,424][2153185] Avg episode reward: [(0, '5716.311')]
[2023-01-11 19:30:08,481][2153185] Fps is (10 sec: 377936.6, 60 sec: 376474.3, 300 sec: 349079.7). Total num frames: 49152000. Throughput: 0: 374544.6. Samples: 48658432. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:08,482][2153185] Avg episode reward: [(0, '5753.585')]
[2023-01-11 19:30:13,423][2153185] Fps is (10 sec: 380151.6, 60 sec: 374933.9, 300 sec: 349834.5). Total num frames: 50987008. Throughput: 0: 375843.1. Samples: 50925568. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:13,423][2153185] Avg episode reward: [(0, '5924.315')]
[2023-01-11 19:30:13,427][2153185] Saving new best policy, reward=5924.315!
[2023-01-11 19:30:18,422][2153185] Fps is (10 sec: 375757.5, 60 sec: 375750.7, 300 sec: 350839.0). Total num frames: 52887552. Throughput: 0: 375698.9. Samples: 52045824. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:18,423][2153185] Avg episode reward: [(0, '6123.117')]
[2023-01-11 19:30:18,430][2153185] Saving new best policy, reward=6123.117!
[2023-01-11 19:30:23,424][2153185] Fps is (10 sec: 373514.6, 60 sec: 374689.5, 300 sec: 351355.1). Total num frames: 54722560. Throughput: 0: 375341.2. Samples: 54263808. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:23,424][2153185] Avg episode reward: [(0, '5322.819')]
[2023-01-11 19:30:28,423][2153185] Fps is (10 sec: 373533.7, 60 sec: 375746.5, 300 sec: 352250.9). Total num frames: 56623104. Throughput: 0: 375732.2. Samples: 56557568. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:28,423][2153185] Avg episode reward: [(0, '5822.090')]
[2023-01-11 19:30:33,424][2153185] Fps is (10 sec: 380091.8, 60 sec: 375732.6, 300 sec: 353088.9). Total num frames: 58523648. Throughput: 0: 375903.8. Samples: 57671680. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:33,425][2153185] Avg episode reward: [(0, '5254.855')]
[2023-01-11 19:30:38,462][2153185] Fps is (10 sec: 378651.3, 60 sec: 375853.0, 300 sec: 353802.7). Total num frames: 60424192. Throughput: 0: 376290.2. Samples: 59963392. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:38,462][2153185] Avg episode reward: [(0, '5823.812')]
[2023-01-11 19:30:43,424][2153185] Fps is (10 sec: 373560.6, 60 sec: 375728.0, 300 sec: 354253.7). Total num frames: 62259200. Throughput: 0: 375736.2. Samples: 62193664. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:43,425][2153185] Avg episode reward: [(0, '5819.084')]
[2023-01-11 19:30:48,476][2153185] Fps is (10 sec: 373017.6, 60 sec: 375538.5, 300 sec: 354867.0). Total num frames: 64159744. Throughput: 0: 375304.5. Samples: 63307776. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:48,477][2153185] Avg episode reward: [(0, '4931.663')]
[2023-01-11 19:30:53,422][2153185] Fps is (10 sec: 380175.9, 60 sec: 376842.7, 300 sec: 355649.0). Total num frames: 66060288. Throughput: 0: 376687.2. Samples: 65587200. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:53,423][2153185] Avg episode reward: [(0, '5748.724')]
[2023-01-11 19:30:58,423][2153185] Fps is (10 sec: 395291.0, 60 sec: 379017.5, 300 sec: 356975.1). Total num frames: 68091904. Throughput: 0: 379737.8. Samples: 68014080. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:30:58,424][2153185] Avg episode reward: [(0, '5415.865')]
[2023-01-11 19:31:03,441][2153185] Fps is (10 sec: 392479.6, 60 sec: 379999.5, 300 sec: 357533.9). Total num frames: 69992448. Throughput: 0: 379724.7. Samples: 69140480. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:31:03,442][2153185] Avg episode reward: [(0, '5741.709')]
[2023-01-11 19:31:08,422][2153185] Fps is (10 sec: 373597.7, 60 sec: 378294.7, 300 sec: 357803.1). Total num frames: 71827456. Throughput: 0: 380484.8. Samples: 71385088. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:31:08,423][2153185] Avg episode reward: [(0, '5806.858')]
[2023-01-11 19:31:13,425][2153185] Fps is (10 sec: 374146.0, 60 sec: 379000.1, 300 sec: 358340.1). Total num frames: 73728000. Throughput: 0: 379498.7. Samples: 73635840. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:31:13,426][2153185] Avg episode reward: [(0, '5602.576')]
[2023-01-11 19:31:18,435][2153185] Fps is (10 sec: 379630.6, 60 sec: 378937.9, 300 sec: 358840.0). Total num frames: 75628544. Throughput: 0: 380018.1. Samples: 74776576. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:31:18,436][2153185] Avg episode reward: [(0, '5567.227')]
[2023-01-11 19:31:23,423][2153185] Fps is (10 sec: 373655.4, 60 sec: 379023.9, 300 sec: 359049.8). Total num frames: 77463552. Throughput: 0: 379163.0. Samples: 77010944. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0)
[2023-01-11 19:31:23,423][2153185] Avg episode reward: [(0, '6320.190')]
[2023-01-11 19:31:23,427][2153185] Saving new best policy, reward=6320.190!
[2023-01-11 19:31:28,423][2153185] Fps is (10 sec: 367428.0, 60 sec: 377922.6, 300 sec: 359228.6). Total num frames: 79298560. Throughput: 0: 378658.5. Samples: 79233024. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0)
[2023-01-11 19:31:28,424][2153185] Avg episode reward: [(0, '6510.601')]
[2023-01-11 19:31:28,431][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000012096_79298560.pth...
[2023-01-11 19:31:28,499][2153185] Saving new best policy, reward=6510.601!
[2023-01-11 19:31:33,423][2153185] Fps is (10 sec: 366976.3, 60 sec: 376837.8, 300 sec: 359400.9). Total num frames: 81133568. Throughput: 0: 378048.5. Samples: 80300032. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0)
[2023-01-11 19:31:33,424][2153185] Avg episode reward: [(0, '6344.935')]
[2023-01-11 19:31:38,466][2153185] Fps is (10 sec: 378491.2, 60 sec: 377895.9, 300 sec: 360066.8). Total num frames: 83099648. Throughput: 0: 377647.8. Samples: 82597888. Policy #0 lag: (min: 1.0, avg: 1.0, max: 1.0)
[2023-01-11 19:31:38,467][2153185] Avg episode reward: [(0, '6454.606')]
[2023-01-11 19:31:43,421][2153185] Fps is (10 sec: 380194.7, 60 sec: 377943.4, 300 sec: 360282.8). Total num frames: 84934656. Throughput: 0: 374349.5. Samples: 84858880. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:31:43,421][2153185] Avg episode reward: [(0, '6075.015')]
[2023-01-11 19:31:48,424][2153185] Fps is (10 sec: 375147.6, 60 sec: 378254.3, 300 sec: 360690.6). Total num frames: 86835200. Throughput: 0: 374792.6. Samples: 85999616. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:31:48,424][2153185] Avg episode reward: [(0, '6092.570')]
[2023-01-11 19:31:53,423][2153185] Fps is (10 sec: 380028.3, 60 sec: 377919.0, 300 sec: 361086.4). Total num frames: 88735744. Throughput: 0: 375369.1. Samples: 88276992. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:31:53,424][2153185] Avg episode reward: [(0, '5996.674')]
[2023-01-11 19:31:58,423][2153185] Fps is (10 sec: 373559.8, 60 sec: 374647.3, 300 sec: 361203.8). Total num frames: 90570752. Throughput: 0: 375071.7. Samples: 90513408. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:31:58,424][2153185] Avg episode reward: [(0, '6051.410')]
[2023-01-11 19:32:03,422][2153185] Fps is (10 sec: 373595.6, 60 sec: 374766.2, 300 sec: 361575.5). Total num frames: 92471296. Throughput: 0: 375119.1. Samples: 91652096. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:32:03,423][2153185] Avg episode reward: [(0, '6075.545')]
[2023-01-11 19:32:08,424][2153185] Fps is (10 sec: 380091.6, 60 sec: 375729.7, 300 sec: 361928.2). Total num frames: 94371840. Throughput: 0: 375819.3. Samples: 93923328. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:32:08,425][2153185] Avg episode reward: [(0, '5770.103')]
[2023-01-11 19:32:13,424][2153185] Fps is (10 sec: 373479.6, 60 sec: 374654.9, 300 sec: 362023.5). Total num frames: 96206848. Throughput: 0: 376097.7. Samples: 96157696. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:32:13,425][2153185] Avg episode reward: [(0, '6145.203')]
[2023-01-11 19:32:18,423][2153185] Fps is (10 sec: 386687.5, 60 sec: 376905.1, 300 sec: 362842.7). Total num frames: 98238464. Throughput: 0: 379653.4. Samples: 97384448. Policy #0 lag: (min: 9.0, avg: 9.0, max: 9.0)
[2023-01-11 19:32:18,424][2153185] Avg episode reward: [(0, '6026.312')]
[2023-01-11 19:32:23,203][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000015266_100073472.pth...
[2023-01-11 19:32:23,219][2153185] Removing ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000005196_34078720.pth
[2023-01-11 19:32:23,220][2153185] Stopping Batcher_0...
[2023-01-11 19:32:23,221][2153185] Stopping InferenceWorker_p0-w0...
[2023-01-11 19:32:23,221][2153185] Stopping RolloutWorker_w0...
[2023-01-11 19:32:23,221][2153185] Saving ./train_dir/v083_brax_basic_benchmark/v083_brax_basic_benchmark_slurm/06_v083_brax_basic_benchmark_see_2322090_env_walker2d_u.rnn_False_n.epo_5/checkpoint_p0/checkpoint_000015266_100073472.pth...
[2023-01-11 19:32:23,235][2153185] Stopping LearnerWorker_p0...
[2023-01-11 19:32:23,235][2153185] Component Batcher_0 stopped!
[2023-01-11 19:32:23,236][2153185] Component InferenceWorker_p0-w0 stopped!
[2023-01-11 19:32:23,236][2153185] Component RolloutWorker_w0 stopped!
[2023-01-11 19:32:23,236][2153185] Component LearnerWorker_p0 stopped!
[2023-01-11 19:32:23,236][2153185] Batcher 0 profile tree view:
batching: 0.3521, releasing_batches: 0.0642
[2023-01-11 19:32:23,236][2153185] InferenceWorker_p0-w0 profile tree view:
update_model: 0.4320
one_step: 0.0012
handle_policy_step: 57.3554
deserialize: 0.4865, stack: 0.0681, obs_to_device_normalize: 10.3711, forward: 35.6708, prepare_outputs: 6.7457, send_messages: 0.8052
[2023-01-11 19:32:23,237][2153185] Learner 0 profile tree view:
misc: 0.0050, prepare_batch: 5.5690
train: 87.4892
epoch_init: 0.0595, minibatch_init: 0.9957, losses_postprocess: 3.1702, kl_divergence: 5.7630, after_optimizer: 0.3136
calculate_losses: 17.7913
losses_init: 0.0331, forward_head: 2.8800, bptt_initial: 0.1263, bptt: 0.1281, tail: 8.7123, advantages_returns: 1.1141, losses: 3.4779
update: 57.5417
clip: 8.7673
[2023-01-11 19:32:23,237][2153185] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.0819, enqueue_policy_requests: 5.6467, process_policy_outputs: 3.6701, env_step: 90.1515, finalize_trajectories: 0.1553, complete_rollouts: 0.0656
post_env_step: 19.1398
process_env_step: 7.7900
[2023-01-11 19:32:23,237][2153185] Loop Runner_EvtLoop terminating...
[2023-01-11 19:32:23,237][2153185] Runner profile tree view:
main_loop: 289.1680
[2023-01-11 19:32:23,238][2153185] Collected {0: 100073472}, FPS: 346073.8