Whisper Medium FLEURS Language Identification
This model is a fine-tuned version of openai/whisper-medium on the FLEURS subset of the google/xtreme_s dataset. It achieves the following results on the evaluation set:
- Loss: 0.8413
- Accuracy: 0.8805
To reproduce this run, execute the command in run.sh
.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 0
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0152 | 1.0 | 8494 | 0.9087 | 0.8431 |
0.0003 | 2.0 | 16988 | 1.0059 | 0.8460 |
0.0 | 3.0 | 25482 | 0.8413 | 0.8805 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for apparaomulpuriril/detect_language
Base model
openai/whisper-medium