|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- donkey-avc-sparkfun-v0 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: TQC |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: 552.57 +/- 285.35 |
|
name: mean_reward |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: donkey-avc-sparkfun-v0 |
|
type: donkey-avc-sparkfun-v0 |
|
--- |
|
|
|
# **TQC** Agent playing **donkey-avc-sparkfun-v0** |
|
This is a trained model of a **TQC** agent playing **donkey-avc-sparkfun-v0** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) |
|
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). |
|
|
|
The RL Zoo is a training framework for Stable Baselines3 |
|
reinforcement learning agents, |
|
with hyperparameter optimization and pre-trained agents included. |
|
|
|
## Usage (with SB3 RL Zoo) |
|
|
|
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> |
|
SB3: https://github.com/DLR-RM/stable-baselines3<br/> |
|
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib |
|
|
|
``` |
|
# Download model and save it into the logs/ folder |
|
python -m utils.load_from_hub --algo tqc --env donkey-avc-sparkfun-v0 -orga araffin -f logs/ |
|
python enjoy.py --algo tqc --env donkey-avc-sparkfun-v0 -f logs/ |
|
``` |
|
|
|
## Training (with the RL Zoo) |
|
``` |
|
python train.py --algo tqc --env donkey-avc-sparkfun-v0 -f logs/ |
|
# Upload the model and generate video (when possible) |
|
python -m utils.push_to_hub --algo tqc --env donkey-avc-sparkfun-v0 -f logs/ -orga araffin |
|
``` |
|
|
|
## Hyperparameters |
|
```python |
|
OrderedDict([('batch_size', 256), |
|
('buffer_size', 200000), |
|
('callback', |
|
[{'utils.callbacks.ParallelTrainCallback': {'gradient_steps': 200}}, |
|
'utils.callbacks.LapTimeCallback']), |
|
('ent_coef', 'auto'), |
|
('env_wrapper', |
|
['ae.wrapper.AutoencoderWrapper', |
|
{'utils.wrappers.HistoryWrapper': {'horizon': 2}}]), |
|
('gamma', 0.99), |
|
('gradient_steps', 256), |
|
('learning_rate', 0.00073), |
|
('learning_starts', 500), |
|
('n_timesteps', 2000000.0), |
|
('normalize', "{'norm_obs': True, 'norm_reward': False}"), |
|
('policy', 'MlpPolicy'), |
|
('policy_kwargs', |
|
'dict(log_std_init=-3, net_arch=[256, 256], n_critics=2, ' |
|
'use_expln=True)'), |
|
('sde_sample_freq', 16), |
|
('tau', 0.02), |
|
('train_freq', 200), |
|
('use_sde', True), |
|
('use_sde_at_warmup', True), |
|
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) |
|
``` |
|
|
|
# Environment Arguments |
|
```python |
|
{'conf': {'cam_resolution': (120, 160, 3), |
|
'car_config': {'body_rgb': (226, 112, 18), |
|
'body_style': 'donkey', |
|
'car_name': 'Toni', |
|
'font_size': 40}, |
|
'frame_skip': 1, |
|
'host': 'localhost', |
|
'level': 'sparkfun_avc', |
|
'log_level': 20, |
|
'max_cte': 16, |
|
'port': 9091, |
|
'start_delay': 5.0}, |
|
'min_throttle': -0.2, |
|
'steer': 0.3} |
|
``` |
|
|