Initial commit
Browse files- README.md +1 -1
- replay.mp4 +3 -0
- results.json +1 -1
- tqc-donkey-mountain-track-v0.zip +1 -1
- tqc-donkey-mountain-track-v0/data +15 -15
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 3000.47 +/- 12.58
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ced883fde344cd5531fe563acb4a678709ce7bce8f249a5bd047790554e5210d
|
3 |
+
size 1532937
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 3000.4744345, "std_reward": 12.58479606855654, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-04T22:31:11.115167"}
|
tqc-donkey-mountain-track-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3968979
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5b0aaf55f82f2bfa0a2293ec5e6921414d9e2b2b192af1b27fbe5290aacfde0
|
3 |
size 3968979
|
tqc-donkey-mountain-track-v0/data
CHANGED
@@ -4,17 +4,17 @@
|
|
4 |
":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
"__module__": "sb3_contrib.tqc.policies",
|
6 |
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
-
"__init__": "<function TQCPolicy.__init__ at
|
8 |
-
"_build": "<function TQCPolicy._build at
|
9 |
-
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at
|
10 |
-
"reset_noise": "<function TQCPolicy.reset_noise at
|
11 |
-
"make_actor": "<function TQCPolicy.make_actor at
|
12 |
-
"make_critic": "<function TQCPolicy.make_critic at
|
13 |
-
"forward": "<function TQCPolicy.forward at
|
14 |
-
"_predict": "<function TQCPolicy._predict at
|
15 |
-
"set_training_mode": "<function TQCPolicy.set_training_mode at
|
16 |
"__abstractmethods__": "frozenset()",
|
17 |
-
"_abc_impl": "<_abc_data object at
|
18 |
},
|
19 |
"verbose": 1,
|
20 |
"policy_kwargs": {
|
@@ -103,12 +103,12 @@
|
|
103 |
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
104 |
"__module__": "stable_baselines3.common.buffers",
|
105 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
106 |
-
"__init__": "<function ReplayBuffer.__init__ at
|
107 |
-
"add": "<function ReplayBuffer.add at
|
108 |
-
"sample": "<function ReplayBuffer.sample at
|
109 |
-
"_get_samples": "<function ReplayBuffer._get_samples at
|
110 |
"__abstractmethods__": "frozenset()",
|
111 |
-
"_abc_impl": "<_abc_data object at
|
112 |
},
|
113 |
"replay_buffer_kwargs": {},
|
114 |
"train_freq": {
|
|
|
4 |
":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
"__module__": "sb3_contrib.tqc.policies",
|
6 |
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TQCPolicy.__init__ at 0x7f50d6d963b0>",
|
8 |
+
"_build": "<function TQCPolicy._build at 0x7f50d6d96440>",
|
9 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f50d6d964d0>",
|
10 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x7f50d6d96560>",
|
11 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x7f50d6d965f0>",
|
12 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x7f50d6d96680>",
|
13 |
+
"forward": "<function TQCPolicy.forward at 0x7f50d6d96710>",
|
14 |
+
"_predict": "<function TQCPolicy._predict at 0x7f50d6d967a0>",
|
15 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f50d6d96830>",
|
16 |
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x7f50d6d83810>"
|
18 |
},
|
19 |
"verbose": 1,
|
20 |
"policy_kwargs": {
|
|
|
103 |
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
104 |
"__module__": "stable_baselines3.common.buffers",
|
105 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
106 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f50d7636830>",
|
107 |
+
"add": "<function ReplayBuffer.add at 0x7f50d76368c0>",
|
108 |
+
"sample": "<function ReplayBuffer.sample at 0x7f50d71a1f80>",
|
109 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f50d71a0050>",
|
110 |
"__abstractmethods__": "frozenset()",
|
111 |
+
"_abc_impl": "<_abc_data object at 0x7f50d7671cc0>"
|
112 |
},
|
113 |
"replay_buffer_kwargs": {},
|
114 |
"train_freq": {
|