metadata
library_name: peft
license: llama3.2
base_model: NousResearch/Llama-3.2-1B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 63bd93dc-ce75-4513-ac10-cade1bba594e
results: []
See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Llama-3.2-1B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 72c617f12cee054e_train_data.json
ds_type: json
field: question
path: /workspace/input_data/72c617f12cee054e_train_data.json
type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/63bd93dc-ce75-4513-ac10-cade1bba594e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/72c617f12cee054e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 63bd93dc-ce75-4513-ac10-cade1bba594e
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 63bd93dc-ce75-4513-ac10-cade1bba594e
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
63bd93dc-ce75-4513-ac10-cade1bba594e
This model is a fine-tuned version of NousResearch/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.7303
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 36
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0851 | 1 | 3.5373 |
3.9013 | 0.2553 | 3 | 3.4989 |
3.5773 | 0.5106 | 6 | 3.2268 |
3.432 | 0.7660 | 9 | 3.0620 |
3.4585 | 1.0213 | 12 | 2.9458 |
2.8128 | 1.2766 | 15 | 2.8751 |
2.6305 | 1.5319 | 18 | 2.8008 |
2.6033 | 1.7872 | 21 | 2.7672 |
2.8825 | 2.0426 | 24 | 2.7446 |
2.2496 | 2.2979 | 27 | 2.7331 |
2.4327 | 2.5532 | 30 | 2.7290 |
2.3787 | 2.8085 | 33 | 2.7301 |
2.3388 | 3.0638 | 36 | 2.7303 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1