metadata
library_name: peft
base_model: katuni4ka/tiny-random-qwen1.5-moe
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 85a121f1-a0cd-4cc1-a42f-54c3275b4007
results: []
See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 8dd787b2d13e2b05_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8dd787b2d13e2b05_train_data.json
type:
field_instruction: prompt_text
field_output: video_text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/85a121f1-a0cd-4cc1-a42f-54c3275b4007
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/8dd787b2d13e2b05_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 85a121f1-a0cd-4cc1-a42f-54c3275b4007
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 85a121f1-a0cd-4cc1-a42f-54c3275b4007
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
85a121f1-a0cd-4cc1-a42f-54c3275b4007
This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.8703
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0006 | 1 | 11.9349 |
11.9355 | 0.0029 | 5 | 11.9326 |
11.9286 | 0.0059 | 10 | 11.9237 |
11.9161 | 0.0088 | 15 | 11.9084 |
11.9059 | 0.0118 | 20 | 11.8935 |
11.8831 | 0.0147 | 25 | 11.8826 |
11.8796 | 0.0177 | 30 | 11.8763 |
11.8769 | 0.0206 | 35 | 11.8728 |
11.8702 | 0.0236 | 40 | 11.8711 |
11.8703 | 0.0265 | 45 | 11.8704 |
11.8696 | 0.0295 | 50 | 11.8703 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1