results

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0488
  • Accuracy: 0.8207
  • Precision: 0.9268
  • Recall: 0.8840
  • F1: 0.9030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0242 0.9971 173 0.0552 0.8452 0.8964 0.8905 0.8883
0.0298 2.0 347 0.0488 0.8207 0.9268 0.8840 0.9030
0.0236 2.9971 520 0.0484 0.8214 0.9338 0.8680 0.8971
0.0298 4.0 694 0.0498 0.8251 0.9357 0.8719 0.9004
0.0232 4.9971 867 0.0477 0.8281 0.9381 0.8732 0.9020

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ardi555/results

Finetuned
(3349)
this model