|
--- |
|
base_model: meta-llama/Llama-3.2-1B-Instruct |
|
datasets: argilla-warehouse/apigen-smollm-trl-FC |
|
library_name: transformers |
|
model_name: Llama-3.2-1B-Instruct-v2-FC |
|
tags: |
|
- generated_from_trainer |
|
- trl |
|
- sft |
|
licence: license |
|
--- |
|
|
|
# Model Card for Llama-3.2-1B-Instruct-v2-FC |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [argilla-warehouse/apigen-smollm-trl-FC](https://huggingface.co/datasets/argilla-warehouse/apigen-smollm-trl-FC) dataset. |
|
It has been trained using [TRL](https://github.com/huggingface/trl). |
|
|
|
## Quick start |
|
|
|
```python |
|
import json |
|
import re |
|
from typing import Optional |
|
|
|
from jinja2 import Template |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers.utils import get_json_schema |
|
|
|
|
|
system_prompt = Template("""You are an expert in composing functions. You are given a question and a set of possible functions. |
|
Based on the question, you will need to make one or more function/tool calls to achieve the purpose. |
|
If none of the functions can be used, point it out and refuse to answer. |
|
If the given question lacks the parameters required by the function, also point it out. |
|
|
|
You have access to the following tools: |
|
<tools>{{ tools }}</tools> |
|
|
|
The output MUST strictly adhere to the following format, and NO other text MUST be included. |
|
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make the tool calls an empty list '[]'. |
|
<tool_call>[ |
|
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}, |
|
... (more tool calls as required) |
|
]</tool_call>""") |
|
|
|
|
|
def prepare_messages( |
|
query: str, |
|
tools: Optional[dict[str, any]] = None, |
|
history: Optional[list[dict[str, str]]] = None |
|
) -> list[dict[str, str]]: |
|
"""Prepare the system and user messages for the given query and tools. |
|
|
|
Args: |
|
query: The query to be answered. |
|
tools: The tools available to the user. Defaults to None, in which case if a |
|
list without content will be passed to the model. |
|
history: Exchange of messages, including the system_prompt from |
|
the first query. Defaults to None, the first message in a conversation. |
|
""" |
|
if tools is None: |
|
tools = [] |
|
if history: |
|
messages = history.copy() |
|
messages.append({"role": "user", "content": query}) |
|
else: |
|
messages = [ |
|
{"role": "system", "content": system_prompt.render(tools=json.dumps(tools))}, |
|
{"role": "user", "content": query} |
|
] |
|
return messages |
|
|
|
|
|
def parse_response(text: str) -> str | dict[str, any]: |
|
"""Parses a response from the model, returning either the |
|
parsed list with the tool calls parsed, or the |
|
model thought or response if couldn't generate one. |
|
|
|
Args: |
|
text: Response from the model. |
|
""" |
|
pattern = r"<tool_call>(.*?)</tool_call>" |
|
matches = re.findall(pattern, text, re.DOTALL) |
|
if matches: |
|
return json.loads(matches[0]) |
|
return text |
|
|
|
|
|
model_name_llama = "argilla-warehouse/Llama-3.2-1B-Instruct-v2-FC" |
|
model = AutoModelForCausalLM.from_pretrained(model_name_llama, device_map="auto", torch_dtype="auto", trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_llama) |
|
|
|
from datetime import datetime |
|
import random |
|
|
|
def get_current_time() -> str: |
|
"""Returns the current time in 24-hour format. |
|
|
|
Returns: |
|
str: Current time in HH:MM:SS format. |
|
""" |
|
return datetime.now().strftime("%H:%M:%S") |
|
|
|
|
|
def get_random_number_between(min: int, max: int) -> int: |
|
""" |
|
Gets a random number between min and max. |
|
|
|
Args: |
|
min: The minimum number. |
|
max: The maximum number. |
|
|
|
Returns: |
|
A random number between min and max. |
|
""" |
|
return random.randint(min, max) |
|
|
|
|
|
tools = [get_json_schema(get_random_number_between), get_json_schema(get_current_time)] |
|
|
|
toolbox = {"get_random_number_between": get_random_number_between, "get_current_time": get_current_time} |
|
|
|
query = "Give me a number between 1 and 300" |
|
query = "Can you give me the hour?" |
|
|
|
messages = prepare_messages(query, tools=tools) |
|
|
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) |
|
result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) |
|
|
|
tool_calls = parse_response(result) |
|
# [{'name': 'get_random_number_between', 'arguments': {'min': 1, 'max': 300}} |
|
|
|
# Get tool responses |
|
tool_responses = [toolbox.get(tc["name"])(*tc["arguments"].values()) for tc in tool_calls] |
|
# ['07:20:47'] |
|
|
|
tool_response = get_random_number_between(*tool_calls[0].get("arguments").values()) |
|
# 45 |
|
``` |
|
|
|
## Training procedure |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/plaguss/huggingface/runs/kac9pnd7) |
|
|
|
This model was trained with SFT. |
|
|
|
### Framework versions |
|
|
|
- TRL: 0.12.0.dev0 |
|
- Transformers: 4.46.0.dev0 |
|
- Pytorch: 2.4.1 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.20.1 |
|
|
|
## Citations |
|
|
|
|
|
|
|
Cite TRL as: |
|
|
|
```bibtex |
|
@misc{vonwerra2022trl, |
|
title = {{TRL: Transformer Reinforcement Learning}}, |
|
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, |
|
year = 2020, |
|
journal = {GitHub repository}, |
|
publisher = {GitHub}, |
|
howpublished = {\url{https://github.com/huggingface/trl}} |
|
} |
|
``` |