|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ecommerce_reviews_with_language_drift |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: distilbert_reviews_with_language_drift |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: ecommerce_reviews_with_language_drift |
|
type: ecommerce_reviews_with_language_drift |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.818 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8167126877417763 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert_reviews_with_language_drift |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ecommerce_reviews_with_language_drift dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4970 |
|
- Accuracy: 0.818 |
|
- F1: 0.8167 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 0.593 | 1.0 | 500 | 0.4723 | 0.799 | 0.7976 | |
|
| 0.3714 | 2.0 | 1000 | 0.4679 | 0.818 | 0.8177 | |
|
| 0.2652 | 3.0 | 1500 | 0.4970 | 0.818 | 0.8167 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|