Model was trained on companion dataset. Minibob guess word from a description modeling well known Alias word game.
from transformers import T5ForConditionalGeneration, T5Tokenizer
prefix = "guess word:"
def predict_word(prompt, model, tokenizer):
prompt = prompt.replace("...", "<extra_id_0>")
prompt = f"{prefix} {prompt}"
input_ids = tokenizer([prompt], return_tensors="pt").input_ids
outputs = model.generate(
input_ids.to(model.device),
num_beams=5,
max_new_tokens=8,
do_sample=False,
num_return_sequences=5
)
candidates = set()
for tokens in outputs:
candidate = tokenizer.decode(tokens, skip_special_tokens=True)
candidate = candidate.strip().lower()
candidates.add(candidate)
return candidates
model_name = "artemsnegirev/minibob"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
prompt = "это животное с копытами на нем ездят"
print(predict_word(prompt, model, tokenizer))
# {'верблюд', 'конь', 'коня', 'лошадь', 'пони'}
Detailed github-based tutorial with pipeline and source code for building Minibob
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.