Edit model card

Portuguese NER BERT-CRF HAREM Default

This model is a fine-tuned BERT model adapted for Named Entity Recognition (NER) tasks. It utilizes Conditional Random Fields (CRF) as the decoder.

The model follows the HAREM Selective labeling scheme for NER. Additionally, it provides options for HAREM Default and Conll-2003 labeling schemes.

How to Use

You can employ this model using the Transformers library's pipeline for NER, or incorporate it as a conventional Transformer in the HuggingFace ecosystem.

from transformers import pipeline
import torch
import nltk

ner_classifier = pipeline(
    "ner",
    model="arubenruben/NER-PT-BERT-CRF-HAREM-Selective",
    device=torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu"),
    trust_remote_code=True
)

text = "FCPorto vence o Benfica por 5-0 no Estádio do Dragão"
tokens = nltk.wordpunct_tokenize(text)
result = ner_classifier(tokens)

Demo

There is a Notebook available to test our code.

PT-Pump-Up

This model is integrated in the project PT-Pump-Up

Evaluation

Testing Data

The model was tested on the Miniharem Testset.

Results

F1-Score: 0.832

Citation

Citation will be made available soon.

BibTeX: :(

Downloads last month
27
Inference Examples
Inference API (serverless) has been turned off for this model.

Dataset used to train arubenruben/NER-PT-BERT-CRF-HAREM-Selective

Collection including arubenruben/NER-PT-BERT-CRF-HAREM-Selective