whisper-base-fa-1 / README.md
arun100's picture
End of training
53e34fc verified
metadata
language:
  - fa
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Whisper Base Persian Iranian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_0 fa
          type: mozilla-foundation/common_voice_16_0
          config: fa
          split: test
          args: fa
        metrics:
          - name: Wer
            type: wer
            value: 58.59649122807018

Whisper Base Persian Iranian

This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common_voice_16_0 fa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7142
  • Wer: 58.5965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1086 1.02 500 1.2735 85.9444
0.8782 3.0 1000 1.0477 76.5527
0.6726 4.02 1500 0.9506 71.8807
0.7501 6.0 2000 0.8943 69.3890
0.6079 7.02 2500 0.8550 67.1322
0.6592 9.0 3000 0.8239 66.2762
0.5703 10.02 3500 0.8007 63.9907
0.5767 12.0 4000 0.7815 63.2562
0.5098 13.02 4500 0.7671 62.1094
0.5373 15.01 5000 0.7555 61.5551
0.4592 16.02 5500 0.7460 61.1086
0.5032 18.01 6000 0.7376 60.5652
0.4262 19.02 6500 0.7329 60.0792
0.4726 21.01 7000 0.7257 59.6696
0.4043 22.02 7500 0.7237 59.3570
0.4758 24.01 8000 0.7187 59.1098
0.412 25.02 8500 0.7173 58.8518
0.5119 27.01 9000 0.7146 58.7276
0.4089 28.03 9500 0.7145 58.6347
0.5186 30.01 10000 0.7142 58.5965

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0