Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: openlm-research/open_llama_3b_v2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
push_dataset_to_hub:
datasets:
  - path: teknium/GPT4-LLM-Cleaned
    type: alpaca
dataset_prepared_path: ./last_run_prepared
val_set_size: 0.02
adapter: lora
lora_model_dir:
sequence_len: 1024
sample_packing: true
lora_r: 8
lora_alpha: 16
lora_dropout: 0.0
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_fan_in_fan_out:
wandb_project: openllama-axolotl
wandb_entity: ashrielbrian
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./outputs/lora-out
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: ./outputs/lora-out/checkpoint-10762
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
gptq_groupsize:
s2_attention:
gptq_model_v1:
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

Visualize in Weights & Biases

outputs/lora-out

This model is a fine-tuned version of openlm-research/open_llama_3b_v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0423

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.4066 0.0002 1 1.6832
0.9583 0.2501 1346 1.1052
1.0801 0.5003 2692 1.0731
0.8311 0.7504 4038 1.0377
0.9795 1.0006 5384 1.0241
0.9849 1.2334 6730 1.0143
1.1134 1.4836 8076 1.0098
0.916 1.7337 9422 1.0073
0.8791 2.0011 10768 1.0076
1.1143 2.2513 12114 1.0257
1.1426 2.5014 13460 1.0169
1.0163 2.7515 14806 1.0169
0.8814 3.0017 16152 1.0085
0.8806 3.2338 17498 1.0438
0.9132 3.4839 18844 1.0442
0.7981 3.7341 20190 1.0423

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ashrielbrian/openllama_3b_v2-teknium-GPT4-LLM-Cleaned

Adapter
(66)
this model