File size: 21,994 Bytes
35dfe93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "***\n",
    "\n",
    "# MIDIstral Pixtral 12B Fine-Tuning Code\n",
    "\n",
    "***\n",
    "\n",
    "## Based upon fine-tuning code by Tomasz Stankiewicz\n",
    "\n",
    "## https://github.com/tomstaan/Clarivex-Pixtral-12B\n",
    "\n",
    "***\n",
    "\n",
    "### Project Los Angeles\n",
    "### Tegridy Code 2024\n",
    "\n",
    "***"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!python3 -m pip install --upgrade pip -q\n",
    "!pip3 install -U transformers\n",
    "!pip3 install -q accelerate datasets peft bitsandbytes hf_transfer flash_attn tensorboard\n",
    "!pip3 install ipywidgets\n",
    "!pip3 install --upgrade jinja2\n",
    "!pip3 install --upgrade peft\n",
    "!pip3 install -U pillow\n",
    "!pip3 install pip install tf-keras\n",
    "\n",
    "# Can be a good idea to re-start the kernel after this"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!sudo pip3 install tf-keras"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!sudo pip install -U numpy==1.26.1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Enable fast weights download and upload\n",
    "import os\n",
    "os.environ[\"HF_HUB_ENABLE_HF_TRANSFER\"] = \"1\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Download model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from PIL import Image\n",
    "from transformers import AutoProcessor, LlavaForConditionalGeneration\n",
    "from transformers import BitsAndBytesConfig\n",
    "\n",
    "model_id = \"mistral-community/pixtral-12b\"\n",
    "\n",
    "model = LlavaForConditionalGeneration.from_pretrained(\n",
    "    model_id,\n",
    "    torch_dtype=torch.bfloat16,\n",
    "    device_map='auto',\n",
    "    #attn_implementation=\"sdpa\",\n",
    ")\n",
    "\n",
    "processor = AutoProcessor.from_pretrained(model_id)\n",
    "\n",
    "# Extract the tokenizer from the processor\n",
    "tokenizer = processor.tokenizer\n",
    "\n",
    "# Set the padding side to 'left' for Flash Attention compatibility\n",
    "tokenizer.padding_side = \"left\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chat Template"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "CHAT_TEMPLATE = \"\"\"\n",
    "{%- for message in messages %} \n",
    "  {%- if message.role == \"user\" %} \n",
    "    <s>[INST] \n",
    "    {%- for item in message.content %} \n",
    "      {%- if item.type == \"text\" %} \n",
    "        {{ item.text }} \n",
    "      {%- elif item.type == \"image\" %} \n",
    "        \\n[IMG] \n",
    "      {%- endif %} \n",
    "    {%- endfor %} \n",
    "    [/INST] \n",
    "  {%- elif message.role == \"assistant\" %} \n",
    "    {%- for item in message.content %} \n",
    "      {%- if item.type == \"text\" %} \n",
    "        {{ item.text }} \n",
    "      {%- endif %} \n",
    "    {%- endfor %} \n",
    "    </s>\n",
    "  {%- endif %} \n",
    "{%- endfor %} \n",
    "\"\"\"\n",
    "\n",
    "# Set the chat template for the tokenizer\n",
    "processor.chat_template = CHAT_TEMPLATE.replace('  ', '')\n",
    "\n",
    "processor.tokenizer.pad_token = processor.tokenizer.eos_token"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Example conversation input with user and assistant roles\n",
    "messages = [\n",
    "    {\n",
    "        \"role\": \"user\",\n",
    "        \"content\": [\n",
    "            {\"type\": \"text\", \"text\": \"Please describe the song music in detail. Thank you.\"},\n",
    "            {\"type\": \"image\"}\n",
    "        ]\n",
    "    },\n",
    "    {\n",
    "        \"role\": \"assistant\",\n",
    "        \"content\": [\n",
    "            {\"type\": \"text\", \"text\": \"The song 'Man In Black' by Johnny Cash in key A# has fast tempo and average pace with Acoustic Guitar(steel) lead, accompanying Acoustic Grand and predominant Acoustic Snare drums\"}\n",
    "        ]\n",
    "    }\n",
    "]\n",
    "\n",
    "# Apply the chat template to format the messages\n",
    "formatted_text = processor.apply_chat_template(messages, add_generation_prompt=False)\n",
    "\n",
    "# Output the formatted text\n",
    "print(\"Formatted text:\\n\", formatted_text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Download dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from PIL import Image\n",
    "import io\n",
    "from datasets import load_dataset\n",
    "\n",
    "def deserialize_image(byte_data):\n",
    "    img_byte_arr = io.BytesIO(byte_data)\n",
    "    img = Image.open(img_byte_arr)\n",
    "    return img\n",
    "\n",
    "dataset = load_dataset(\"asigalov61/MIDIstral\", split='train').train_test_split(test_size=0.001)\n",
    "\n",
    "# Access the training and test sets\n",
    "train_dataset = dataset[\"train\"]\n",
    "eval_dataset = dataset[\"test\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "len(train_dataset)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "eval_dataset[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Evaluation before fine-tuning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from PIL import Image\n",
    "from torchvision.transforms.functional import to_pil_image, resize\n",
    "\n",
    "def run_model_evaluation(model, dataset, num_samples=None, device='cuda', constant_query=None):\n",
    "    model.eval()\n",
    "    results = []\n",
    "\n",
    "    # Limit the dataset if a specific number of samples is provided\n",
    "    if num_samples is not None:\n",
    "        dataset = torch.utils.data.Subset(dataset, range(num_samples))\n",
    "\n",
    "    for example in dataset:\n",
    "        image = deserialize_image(example[\"image\"])\n",
    "        if constant_query is None:\n",
    "            query = example[\"query\"][\"en\"]\n",
    "        else:\n",
    "            query = constant_query  # Use the constant query if provided\n",
    "        \n",
    "        # Display a reduced size version of the image\n",
    "        pil_image = image\n",
    "        aspect_ratio = pil_image.width / pil_image.height\n",
    "        new_width = 300\n",
    "        new_height = int(new_width / aspect_ratio)\n",
    "        display_image = resize(pil_image, (new_height, new_width))\n",
    "        display_image.show()  # This will open the image in the default image viewer\n",
    "\n",
    "        # Construct the message template\n",
    "        messages = [\n",
    "            {\n",
    "                \"role\": \"user\",\n",
    "                \"content\": [\n",
    "                    # {\"type\": \"text\", \"text\": \"Answer briefly.\"},\n",
    "                    {\"type\": \"text\", \"text\": query},\n",
    "                    {\"type\": \"image\"},  # YOU CAN COMMENT THIS OUT IF THERE ARE NO IMAGES\n",
    "                    # {\"type\": \"image\"},  # ADD A SECOND IMAGE!!! Note that the text is also possible here.\n",
    "                ]\n",
    "            }\n",
    "        ]\n",
    "\n",
    "        # Apply the chat template to preprocess input\n",
    "        formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)\n",
    "        print(f\"Formatted prompt: {formatted_prompt}\")\n",
    "        text = processor.apply_chat_template(messages, add_generation_prompt=True)\n",
    "        inputs = processor(text=[text.strip()], images=[image], return_tensors=\"pt\", padding=True).to(device)\n",
    "        # inputs = processor(text=[text.strip()], images=[image, image2], return_tensors=\"pt\" padding=True).to(device)\n",
    "\n",
    "        # Generate output from the model\n",
    "        generated_ids = model.generate(**inputs, max_new_tokens=64)\n",
    "        generated_texts = processor.batch_decode(generated_ids[:, inputs[\"input_ids\"].shape[-1]:])\n",
    "\n",
    "        print(f\"Prediction: {generated_texts[0]}\\n\")\n",
    "\n",
    "        results.append(generated_texts[0])  # Store the result\n",
    "\n",
    "    return results\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Usage\n",
    "eval_results_before_fine_tuning = run_model_evaluation(model, \n",
    "                                                       eval_dataset, \n",
    "                                                       num_samples=2, \n",
    "                                                       device='cuda', \n",
    "                                                       constant_query='Please describe the song music in detail. Thank you.')\n",
    "\n",
    "print('eval_results_before_fine_tuning:', eval_results_before_fine_tuning)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Fine-tuning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "\n",
    "class MyDataCollator:\n",
    "    def __init__(self, processor):\n",
    "        self.processor = processor\n",
    "\n",
    "    def __call__(self, examples):\n",
    "        texts = []\n",
    "        images = []\n",
    "        assistant_responses = []  # To track assistant responses for proper masking\n",
    "        for example in examples:\n",
    "            image = deserialize_image(example[\"image\"])\n",
    "            question = example[\"question\"]  # for chess dataset\n",
    "            answer = example[\"answer\"]  # for chess dataset\n",
    "\n",
    "            messages = [\n",
    "                {\n",
    "                    \"role\": \"user\",\n",
    "                    \"content\": [\n",
    "                        {\"type\": \"text\", \"text\": question},\n",
    "                        {\"type\": \"image\"},  # Images after the text.\n",
    "                    ]\n",
    "                },\n",
    "                {\n",
    "                    \"role\": \"assistant\",\n",
    "                    \"content\": [\n",
    "                        {\"type\": \"text\", \"text\": answer}\n",
    "                    ]\n",
    "                }\n",
    "            ]\n",
    "\n",
    "            # Convert messages to the desired text format using processor's template\n",
    "            text = self.processor.apply_chat_template(messages, add_generation_prompt=False)\n",
    "\n",
    "            texts.append(text.strip())\n",
    "            images.append([image])\n",
    "            assistant_responses.append(answer)  # Track assistant's response for later use\n",
    "\n",
    "        # Tokenize and process batch\n",
    "        batch = self.processor(text=texts, images=images, return_tensors=\"pt\", padding=True)\n",
    "\n",
    "        # Prepare labels; we will mask non-assistant tokens for generation\n",
    "        labels = batch[\"input_ids\"].clone() \n",
    "\n",
    "        # For each example, find assistant tokens and mask everything else\n",
    "        for i, (input_ids, assistant_response) in enumerate(zip(batch[\"input_ids\"], assistant_responses)):\n",
    "            # Tokenize just the assistant response\n",
    "            assistant_tokens = self.processor.tokenizer(assistant_response, return_tensors=\"pt\")[\"input_ids\"][0]\n",
    "\n",
    "            # Find where the assistant tokens start in the input sequence\n",
    "            start_idx = self.find_subsequence(input_ids, assistant_tokens)\n",
    "\n",
    "            if start_idx is not None:\n",
    "                # Mask everything except the assistant tokens\n",
    "                labels[i, :start_idx] = -100  # Ignore everything before the assistant's response\n",
    "                labels[i, start_idx + len(assistant_tokens):] = -100  # Ignore everything after\n",
    "\n",
    "        # Assign masked labels back to the batch\n",
    "        batch[\"labels\"] = labels\n",
    "\n",
    "        return batch\n",
    "    \n",
    "    def find_subsequence(self, sequence, subsequence):\n",
    "        \"\"\"\n",
    "        Find the start index of a subsequence (assistant tokens) in a sequence (input tokens).\n",
    "        \"\"\"\n",
    "        seq_len = len(sequence)\n",
    "        sub_len = len(subsequence)\n",
    "\n",
    "        for i in range(seq_len - sub_len + 1):\n",
    "            if torch.equal(sequence[i:i + sub_len], subsequence):\n",
    "                return i\n",
    "        return None\n",
    "    \n",
    "data_collator = MyDataCollator(processor)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "\n",
    "# Select a small batch of examples (e.g., 2 examples for quick testing)\n",
    "sample_batch = [train_dataset[i] for i in range(2)]\n",
    "\n",
    "# Call the data collator with the sample batch to process it\n",
    "processed_batch = data_collator(sample_batch)\n",
    "\n",
    "# Print the processed batch keys to check what's inside\n",
    "print(\"Processed batch keys:\", processed_batch.keys())\n",
    "\n",
    "# Print out the texts after applying the chat template\n",
    "print(\"\\nTokenized input IDs (before padding):\")\n",
    "print(processed_batch[\"input_ids\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "processed_batch[\"input_ids\"].shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from peft import LoraConfig\n",
    "\n",
    "lora_config = LoraConfig(\n",
    "    r=32,  # Rank (usually 8, 16, or 32 depending on model size and needs)\n",
    "    lora_alpha=32,  # Scaling factor for the low-rank updates\n",
    "    use_rslora=True,  # Use RS LoRA for regularization\n",
    "    target_modules=\"all-linear\",  # Target specific modules (e.g., linear layers)\n",
    "    # modules_to_save=['lm_head','embed_tokens'],\n",
    "    lora_dropout=0.1,  # Dropout for low-rank adapter layers\n",
    "    bias=\"none\",  # Bias in adapter layers: \"none\", \"all\", \"lora_only\"\n",
    "    task_type=\"CAUSAL_LM\"  # Task type: \"CAUSAL_LM\", \"SEQ_2_SEQ_LM\", or \"TOKEN_CLS\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from peft import get_peft_model\n",
    "\n",
    "model=get_peft_model(model, lora_config)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.print_trainable_parameters()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import TrainingArguments, Trainer\n",
    "\n",
    "# for main fine-tuning\n",
    "epochs = 1\n",
    "lr = 3e-5\n",
    "schedule = \"constant\"\n",
    "\n",
    "# Optional, for annealing\n",
    "# epochs = 0.4\n",
    "# lr = 3e-5\n",
    "# schedule = \"linear\"\n",
    "\n",
    "run_name = f\"MIDIstral-{lr}_lr-{epochs}_epochs-{schedule}_schedule\"\n",
    "\n",
    "training_args = TrainingArguments(\n",
    "     # max_steps=1,  # Optional: run only for one step, useful for debugging\n",
    "    num_train_epochs=epochs,  # Number of training epochs\n",
    "    per_device_train_batch_size=8,  # Batch size per device for training\n",
    "    per_device_eval_batch_size=8,  # Batch size per device for evaluation\n",
    "    gradient_accumulation_steps=1,  # Number of steps to accumulate gradients before updating\n",
    "    # warmup_steps=10,  # Optional: number of warmup steps (uncomment if needed)\n",
    "    learning_rate=lr,  # Learning rate for the optimizer\n",
    "    weight_decay=0.01,  # Weight decay to apply (for regularization)\n",
    "    logging_steps=0.001,  # Log training progress every 0.1 steps\n",
    "    output_dir=\"MIDIstral_pixtral\",  # Directory where the fine-tuned model will be saved. Make sure it has pixtral in a name\n",
    "    eval_strategy=\"steps\",  # Strategy for evaluation: perform evaluation every few steps\n",
    "    eval_steps=0.02,  # Perform evaluation every 0.2 steps (relative to total steps)\n",
    "    lr_scheduler_type=schedule,  # Set learning rate scheduler type\n",
    "    # save_strategy=\"steps\",  # Optional: save model every few steps (commented out)\n",
    "    # save_steps=250,  # Optional: how many steps between saves (commented out)\n",
    "    # save_total_limit=1,  # Optional: total number of checkpoints to keep (commented out)\n",
    "    bf16=True,  # Use bf16 precision for training\n",
    "    remove_unused_columns=False,  # Do not remove unused columns from the dataset\n",
    "    report_to=\"tensorboard\",  # Report results to TensorBoard for visualization\n",
    "    run_name=run_name,  # Set the run name for tracking experiments\n",
    "    logging_dir=f\"./logs/{run_name}\",  # Directory for logging\n",
    "    gradient_checkpointing=True,  # Enable gradient checkpointing to save VRAM\n",
    "    gradient_checkpointing_kwargs={'use_reentrant': True}  # Additional settings for gradient checkpointing\n",
    ")\n",
    "\n",
    "\n",
    "trainer = Trainer(\n",
    "    model=model,  # The model to be trained\n",
    "    args=training_args,  # Training arguments defined earlier\n",
    "    data_collator=data_collator,  # Data collator to handle batches\n",
    "    train_dataset=train_dataset,  # Training dataset\n",
    "    eval_dataset=eval_dataset,  # Evaluation dataset for computing loss or metrics\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.save_model('./MIDIstral/')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.push_to_hub(token='your-auth-token-here')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "processor.push_to_hub(\"asigalov61/MIDIstral_pixtral\", token='your-auth-token-here')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Inference"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import LlavaForConditionalGeneration, AutoProcessor\n",
    "import torch\n",
    "\n",
    "model = LlavaForConditionalGeneration.from_pretrained(\n",
    "    'asigalov61/MIDIstral_pixtral',\n",
    "    torch_dtype=torch.bfloat16,  # Adjust dtype if needed\n",
    "    device_map='auto'\n",
    ")\n",
    "processor = AutoProcessor.from_pretrained('asigalov61/MIDIstral_pixtral')\n",
    "tokenizer = processor.tokenizer\n",
    "tokenizer.padding_side = \"left\"  # For Flash Attention compatibility\n",
    "\n",
    "print(\"Model and processor loaded successfully from checkpoint-30.\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Evaluation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "eval_results_after_fine_tuning = run_model_evaluation(model, eval_dataset, num_samples=5, device='cuda', constant_query='Please write the most appropriate lyrics for the song. Thank you.')\n",
    "\n",
    "print('eval_results_before_fine_tuning:', eval_results_before_fine_tuning)\n",
    "print('eval_results_after_fine_tuning:', eval_results_after_fine_tuning)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "eval_dataset[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('eval_results.txt', 'w') as f:\n",
    "    f.write('eval_results_before_fine_tuning: ' + str(eval_results_before_fine_tuning) + '\\n')\n",
    "    f.write('eval_results_after_fine_tuning: ' + str(eval_results_after_fine_tuning) + '\\n')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}