Edit model card

transformers_issues_topics

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("asoria/transformers_issues_topics")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 30
  • Number of training documents: 9000
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 pytorch - tensorflow - bert - tf - pretrained 15 -1_pytorch_tensorflow_bert_tf
0 bert - bertforsequenceclassification - berttokenizer - bart - batchencodeplus 2321 0_bert_bertforsequenceclassification_berttokenizer_bart
1 cuda - memory - trainertrain - tensorflow - trainer 1554 1_cuda_memory_trainertrain_tensorflow
2 transformerscli - transformers - transformer - importerror - transformerxl 882 2_transformerscli_transformers_transformer_importerror
3 modelcard - modelcards - card - model - models 490 3_modelcard_modelcards_card_model
4 gpt2 - gpt2tokenizer - gpt2xl - gpt2tokenizerfast - gpt2model 462 4_gpt2_gpt2tokenizer_gpt2xl_gpt2tokenizerfast
5 attributeerror - typeerror - valueerror - runtimeerror - indexerror 437 5_attributeerror_typeerror_valueerror_runtimeerror
6 typos - typo - doc - docstring - fix 336 6_typos_typo_doc_docstring
7 t5 - t5model - t5base - tf - t5large 298 7_t5_t5model_t5base_tf
8 readmemd - readmetxt - readme - modelcard - file 270 8_readmemd_readmetxt_readme_modelcard
9 ci - testing - tests - test - speedup 254 9_ci_testing_tests_test
10 s2s - s2sdistill - s2t - s2strainer - exampless2s 245 10_s2s_s2sdistill_s2t_s2strainer
11 glue - gluepy - glueconvertexamplestofeatures - roberta - huggingfacetransformers 214 11_glue_gluepy_glueconvertexamplestofeatures_roberta
12 ner - pipeline - pipelines - nerpipeline - fillmaskpipeline 158 12_ner_pipeline_pipelines_nerpipeline
13 rag - ragtokenforgeneration - ragsequenceforgeneration - clean - tests 153 13_rag_ragtokenforgeneration_ragsequenceforgeneration_clean
14 questionansweringpipeline - questionanswering - answering - tfalbertforquestionanswering - questionasnwering 143 14_questionansweringpipeline_questionanswering_answering_tfalbertforquestionanswering
15 onnx - 04onnxexport - 04onnxexportipynb - aionnx - sphynx 131 15_onnx_04onnxexport_04onnxexportipynb_aionnx
16 longformer - longformers - longform - longformerlayer - longformermodel 104 16_longformer_longformers_longform_longformerlayer
17 labelsmoothednllloss - label - labelsmoothingfactor - labels - labelsmoothing 76 17_labelsmoothednllloss_label_labelsmoothingfactor_labels
18 benchmark - benchmarking - benchmarks - accuracy - evaluation 73 18_benchmark_benchmarking_benchmarks_accuracy
19 wav2vec2 - wav2vec - wav2vec20 - wav2vec2forctc - wav2vec2xlrswav2vec2 67 19_wav2vec2_wav2vec_wav2vec20_wav2vec2forctc
20 flax - flaxelectraformaskedlm - flaxelectraforpretraining - flaxjax - flaxelectramodel 51 20_flax_flaxelectraformaskedlm_flaxelectraforpretraining_flaxjax
21 configpath - configs - config - configuration - modelconfigs 49 21_configpath_configs_config_configuration
22 logging - logs - log - logger - loghistory 40 22_logging_logs_log_logger
23 cachedir - cache - cachedpath - caching - cached 38 23_cachedir_cache_cachedpath_caching
24 wandbproject - wandb - sagemaker - sagemakertrainer - wandbcallback 36 24_wandbproject_wandb_sagemaker_sagemakertrainer
25 notebook - notebooks - community - colab - t5 33 25_notebook_notebooks_community_colab
26 electra - electrapretrainedmodel - electraformaskedlm - electraformultiplechoice - electrafortokenclassification 30 26_electra_electrapretrainedmodel_electraformaskedlm_electraformultiplechoice
27 layoutlm - layout - layoutlmtokenizer - layoutlmbaseuncased - tf 25 27_layoutlm_layout_layoutlmtokenizer_layoutlmbaseuncased
28 pplm - pr - deprecated - variable - ppl 15 28_pplm_pr_deprecated_variable

Training hyperparameters

  • calculate_probabilities: False
  • language: english
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: 30
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.38.post1
  • UMAP: 0.5.6
  • Pandas: 2.1.4
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.1.1
  • Transformers: 4.44.2
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.