|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: W2V2-Bert_DigitalUmuganda_Afrivoice_Shona_20hr_v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# W2V2-Bert_DigitalUmuganda_Afrivoice_Shona_20hr_v1 |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3305 |
|
- Wer: 0.2899 |
|
- Cer: 0.0592 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 3.1612 | 1.0 | 438 | 0.3803 | 0.4293 | 0.0758 | |
|
| 0.2723 | 2.0 | 876 | 0.2631 | 0.2778 | 0.0497 | |
|
| 0.21 | 3.0 | 1314 | 0.2434 | 0.2803 | 0.0495 | |
|
| 0.1875 | 4.0 | 1752 | 0.2326 | 0.2569 | 0.0458 | |
|
| 0.1733 | 5.0 | 2190 | 0.2366 | 0.2586 | 0.0448 | |
|
| 0.1611 | 6.0 | 2628 | 0.2510 | 0.2768 | 0.0478 | |
|
| 0.1545 | 7.0 | 3066 | 0.2434 | 0.2652 | 0.0461 | |
|
| 0.1498 | 8.0 | 3504 | 0.2507 | 0.2947 | 0.0485 | |
|
| 0.1421 | 9.0 | 3942 | 0.2451 | 0.2596 | 0.0460 | |
|
| 0.1359 | 10.0 | 4380 | 0.2422 | 0.2603 | 0.0471 | |
|
| 0.1279 | 11.0 | 4818 | 0.2527 | 0.2511 | 0.0449 | |
|
| 0.116 | 12.0 | 5256 | 0.2667 | 0.2547 | 0.0451 | |
|
| 0.1044 | 13.0 | 5694 | 0.2630 | 0.2891 | 0.0477 | |
|
| 0.0927 | 14.0 | 6132 | 0.2811 | 0.2600 | 0.0448 | |
|
| 0.0843 | 15.0 | 6570 | 0.2852 | 0.2666 | 0.0461 | |
|
| 0.0725 | 16.0 | 7008 | 0.2936 | 0.2651 | 0.0456 | |
|
| 0.0639 | 17.0 | 7446 | 0.3091 | 0.2682 | 0.0468 | |
|
| 0.0552 | 18.0 | 7884 | 0.3164 | 0.2593 | 0.0467 | |
|
| 0.0473 | 19.0 | 8322 | 0.3319 | 0.2684 | 0.0466 | |
|
| 0.0429 | 20.0 | 8760 | 0.3389 | 0.2734 | 0.0474 | |
|
| 0.0366 | 21.0 | 9198 | 0.3646 | 0.2777 | 0.0468 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.1 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|