Beijuka's picture
End of training
c043bc9 verified
metadata
library_name: transformers
language:
  - sn
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - DigitalUmuganda_Afrivoice/Shona
metrics:
  - wer
model-index:
  - name: facebook/mms-1b-all
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: DigitalUmuganda
          type: DigitalUmuganda_Afrivoice/Shona
        metrics:
          - name: Wer
            type: wer
            value: 0.2504980805675689

facebook/mms-1b-all

This model is a fine-tuned version of facebook/mms-1b-all on the DigitalUmuganda dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2009
  • Model Preparation Time: 0.0179
  • Wer: 0.2505
  • Cer: 0.0456

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
3.4446 0.9997 940 0.2042 0.0179 0.2927 0.0496
0.881 1.9995 1880 0.1954 0.0179 0.2771 0.0467
0.833 2.9992 2820 0.1863 0.0179 0.2646 0.0444
0.8 4.0 3761 0.1833 0.0179 0.2636 0.0441
0.7753 4.9997 4701 0.1800 0.0179 0.2594 0.0430
0.7581 5.9995 5641 0.1776 0.0179 0.2558 0.0423
0.742 6.9992 6581 0.1746 0.0179 0.2549 0.0421
0.7279 8.0 7522 0.1733 0.0179 0.2515 0.0415
0.7167 8.9997 8462 0.1728 0.0179 0.2494 0.0408
0.7039 9.9995 9402 0.1706 0.0179 0.2461 0.0405
0.6943 10.9992 10342 0.1701 0.0179 0.2499 0.0403
0.6868 12.0 11283 0.1692 0.0179 0.2461 0.0403
0.6759 12.9997 12223 0.1686 0.0179 0.2424 0.0401
0.6664 13.9995 13163 0.1692 0.0179 0.2425 0.0399
0.6592 14.9992 14103 0.1664 0.0179 0.2442 0.0397
0.6538 16.0 15044 0.1661 0.0179 0.2404 0.0397
0.6467 16.9997 15984 0.1662 0.0179 0.2371 0.0390
0.6398 17.9995 16924 0.1670 0.0179 0.2383 0.0390
0.6369 18.9992 17864 0.1676 0.0179 0.2392 0.0393
0.6298 20.0 18805 0.1668 0.0179 0.2363 0.0386
0.6251 20.9997 19745 0.1676 0.0179 0.2406 0.0390
0.618 21.9995 20685 0.1656 0.0179 0.2383 0.0389
0.6091 22.9992 21625 0.1661 0.0179 0.2373 0.0391
0.607 24.0 22566 0.1655 0.0179 0.2405 0.0394
0.6036 24.9997 23506 0.1653 0.0179 0.2407 0.0392
0.5955 25.9995 24446 0.1653 0.0179 0.2402 0.0390
0.5915 26.9992 25386 0.1650 0.0179 0.2380 0.0389

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.2
  • Tokenizers 0.20.1