|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- FastJobs/Visual_Emotional_Analysis |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: rgai_emotion_recognition |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.58125 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# rgai_emotion_recognition |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3077 |
|
- Accuracy: 0.5813 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.0698 | 1.0 | 25 | 2.0921 | 0.1125 | |
|
| 1.973 | 2.0 | 50 | 1.9930 | 0.1938 | |
|
| 1.8091 | 3.0 | 75 | 1.8374 | 0.3937 | |
|
| 1.5732 | 4.0 | 100 | 1.6804 | 0.475 | |
|
| 1.4087 | 5.0 | 125 | 1.5660 | 0.5125 | |
|
| 1.2653 | 6.0 | 150 | 1.4769 | 0.5375 | |
|
| 1.1443 | 7.0 | 175 | 1.4084 | 0.55 | |
|
| 0.9888 | 8.0 | 200 | 1.3633 | 0.5625 | |
|
| 0.9029 | 9.0 | 225 | 1.3305 | 0.55 | |
|
| 0.8372 | 10.0 | 250 | 1.3077 | 0.5813 | |
|
| 0.7569 | 11.0 | 275 | 1.2983 | 0.5625 | |
|
| 0.6886 | 12.0 | 300 | 1.2806 | 0.5687 | |
|
| 0.6216 | 13.0 | 325 | 1.2718 | 0.5687 | |
|
| 0.6385 | 14.0 | 350 | 1.2700 | 0.5563 | |
|
| 0.6029 | 15.0 | 375 | 1.2693 | 0.5625 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |