metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-emotion-classifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.55
vit-emotion-classifier
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3090
- Accuracy: 0.55
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4729 | 1.0 | 10 | 1.5748 | 0.4875 |
1.4484 | 2.0 | 20 | 1.5526 | 0.4875 |
1.4053 | 3.0 | 30 | 1.5228 | 0.4562 |
1.3492 | 4.0 | 40 | 1.4721 | 0.5 |
1.2664 | 5.0 | 50 | 1.4448 | 0.5125 |
1.2005 | 6.0 | 60 | 1.3783 | 0.5062 |
1.1231 | 7.0 | 70 | 1.3427 | 0.5375 |
1.0472 | 8.0 | 80 | 1.2859 | 0.5625 |
0.9852 | 9.0 | 90 | 1.2732 | 0.5813 |
0.8974 | 10.0 | 100 | 1.2220 | 0.575 |
0.8314 | 11.0 | 110 | 1.2782 | 0.5312 |
0.7964 | 12.0 | 120 | 1.2889 | 0.5437 |
0.6993 | 13.0 | 130 | 1.2989 | 0.5188 |
0.6915 | 14.0 | 140 | 1.3053 | 0.5375 |
0.608 | 15.0 | 150 | 1.2563 | 0.5875 |
0.5416 | 16.0 | 160 | 1.2473 | 0.5563 |
0.5202 | 17.0 | 170 | 1.2753 | 0.5625 |
0.5047 | 18.0 | 180 | 1.2791 | 0.5563 |
0.4779 | 19.0 | 190 | 1.3142 | 0.5437 |
0.4569 | 20.0 | 200 | 1.2743 | 0.5813 |
0.4313 | 21.0 | 210 | 1.2727 | 0.5312 |
0.4536 | 22.0 | 220 | 1.2514 | 0.5938 |
0.4166 | 23.0 | 230 | 1.3260 | 0.5312 |
0.3673 | 24.0 | 240 | 1.2950 | 0.55 |
0.3544 | 25.0 | 250 | 1.2268 | 0.5875 |
0.3568 | 26.0 | 260 | 1.3874 | 0.4875 |
0.3509 | 27.0 | 270 | 1.3735 | 0.525 |
0.3711 | 28.0 | 280 | 1.2886 | 0.5375 |
0.3555 | 29.0 | 290 | 1.3152 | 0.5375 |
0.3068 | 30.0 | 300 | 1.3927 | 0.5375 |
0.3007 | 31.0 | 310 | 1.4131 | 0.5188 |
0.3062 | 32.0 | 320 | 1.3256 | 0.575 |
0.3114 | 33.0 | 330 | 1.3714 | 0.5 |
0.279 | 34.0 | 340 | 1.4198 | 0.5188 |
0.2888 | 35.0 | 350 | 1.5321 | 0.475 |
0.2647 | 36.0 | 360 | 1.4342 | 0.5062 |
0.2574 | 37.0 | 370 | 1.4149 | 0.5563 |
0.2539 | 38.0 | 380 | 1.4286 | 0.5125 |
0.2566 | 39.0 | 390 | 1.4805 | 0.5125 |
0.2298 | 40.0 | 400 | 1.3820 | 0.4875 |
0.2236 | 41.0 | 410 | 1.3683 | 0.5437 |
0.2201 | 42.0 | 420 | 1.3332 | 0.5687 |
0.2696 | 43.0 | 430 | 1.4725 | 0.5188 |
0.2319 | 44.0 | 440 | 1.3926 | 0.5375 |
0.2269 | 45.0 | 450 | 1.3477 | 0.5563 |
0.2201 | 46.0 | 460 | 1.4054 | 0.5563 |
0.2114 | 47.0 | 470 | 1.3308 | 0.55 |
0.2319 | 48.0 | 480 | 1.3353 | 0.5625 |
0.2177 | 49.0 | 490 | 1.3019 | 0.5437 |
0.2042 | 50.0 | 500 | 1.3089 | 0.5875 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3