test

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6527
  • Precision: 0.7393
  • Recall: 0.7759
  • F1: 0.7571
  • Accuracy: 0.7614

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.3333 100 0.9776 0.4894 0.6113 0.5436 0.6166
No log 2.6667 200 0.8649 0.6249 0.6296 0.6273 0.7231
No log 4.0 300 0.8745 0.6449 0.7392 0.6888 0.7326
No log 5.3333 400 0.9419 0.6292 0.7168 0.6702 0.7367
0.6362 6.6667 500 0.9902 0.7090 0.7458 0.7269 0.7700
0.6362 8.0 600 1.0048 0.7050 0.7315 0.7180 0.7614
0.6362 9.3333 700 1.1327 0.6918 0.7305 0.7106 0.7568
0.6362 10.6667 800 1.3954 0.6952 0.7366 0.7153 0.7333
0.6362 12.0 900 1.2721 0.7002 0.7509 0.7247 0.7491
0.1105 13.3333 1000 1.3422 0.7166 0.7356 0.7260 0.7521
0.1105 14.6667 1100 1.3957 0.72 0.7427 0.7312 0.7605
0.1105 16.0 1200 1.4581 0.7250 0.7519 0.7382 0.7608
0.1105 17.3333 1300 1.4598 0.7459 0.7371 0.7415 0.7577
0.1105 18.6667 1400 1.5542 0.7182 0.7504 0.7339 0.7497
0.0271 20.0 1500 1.5411 0.7176 0.7779 0.7465 0.7549
0.0271 21.3333 1600 1.6468 0.7251 0.7539 0.7393 0.7452
0.0271 22.6667 1700 1.6821 0.7311 0.7550 0.7429 0.7487
0.0271 24.0 1800 1.6220 0.7364 0.7499 0.7431 0.7585
0.0271 25.3333 1900 1.6220 0.7403 0.7667 0.7533 0.7599
0.0055 26.6667 2000 1.6161 0.7370 0.7682 0.7523 0.7687
0.0055 28.0 2100 1.6683 0.7396 0.7713 0.7551 0.7599
0.0055 29.3333 2200 1.6527 0.7393 0.7759 0.7571 0.7614

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
110
Safetensors
Model size
284M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ataseyfi/test

Finetuned
(24)
this model