austinmw's picture
update model card README.md
ac9b2d2
|
raw
history blame
1.98 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - health_fact
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased-finetuned-health_facts
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: health_fact
          type: health_fact
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5617792421746294
          - name: F1
            type: f1
            value: 0.6021353784442518

distilbert-base-uncased-finetuned-health_facts

This model is a fine-tuned version of distilbert-base-uncased on the health_fact dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1172
  • Accuracy: 0.5618
  • F1: 0.6021

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.1497 1.0 154 0.9639 0.5404 0.5887
0.9639 2.0 308 0.9332 0.5692 0.6130
0.841 3.0 462 0.9520 0.5544 0.6047
0.734 4.0 616 1.1172 0.5618 0.6021

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0
  • Datasets 1.16.1
  • Tokenizers 0.10.3