distilbert-base-uncased-finetuned-tweets-sentiment

This model is a fine-tuned version of distilbert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8192
  • Accuracy: 0.7295
  • F1: 0.7303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.7126 1.0 713 0.6578 0.7185 0.7181
0.5514 2.0 1426 0.6249 0.7005 0.7046
0.4406 3.0 2139 0.7053 0.731 0.7296
0.3511 4.0 2852 0.7580 0.718 0.7180
0.2809 5.0 3565 0.8192 0.7295 0.7303

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0
  • Datasets 1.16.1
  • Tokenizers 0.10.3
Downloads last month
3,217
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train austinmw/distilbert-base-uncased-finetuned-tweets-sentiment

Evaluation results