GRAG Logo

GRAG-LLAMA-3.1-8B-MERGED-HESSIAN-AI

GRAG (German Retrieval Augmented Generation) models are designed for the German-speaking market, enabling innovation and AI solutions to drive German research collaboration in business-focused Generative AI by 2025

Model Details

The core models released in this batch are the following:

Size Training Tokens
GRAG-LLAMA-CPT 507.47 million
GRAG-LLAMA-SFT 2.03 billion
GRAG-LLAMA-ORPO 2.0577 billion

Model Description

  • Developed by: Avemio AI Team
  • Supported by: Hessian AI
  • Model type: a Transformer style autoregressive language model.
  • Language(s) (NLP): German, English
  • License: The code and model are released under Apache 2.0.
  • Contact: grag@avemio.digital

Model Sources

Uses

Inference

Quickly get inference running with the following required installation: Now, proceed as usual with HuggingFace:

from transformers import AutoModelForCausalLM, AutoTokenizer
 
model_name = "avemio/GRAG-LLAMA-3.1-8B-MERGED-HESSIAN-AI"
 
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
im_end_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>')
im_start_token_id = tokenizer.convert_tokens_to_ids('<|im_start|>')
 
messages = [
    {"role": "system", "content": "Folge den Anweisungen des Benutzers. Bevor du deine finale Antwort gibst, schildere deine Überlegungen zur Lösung des Problems."},
    {"role": "user", "content": "Ferdinand steht vor der Herausforderung, eine faire Besuchsregelung für seine drei Kinder zu finden, die den Bedürfnissen jedes einzelnen Kindes gerecht wird. Jedes Kind hat unterschiedliche Vorlieben und Bedürfnisse, die in den Besuchsplan integriert werden müssen. Er muss sicherstellen, dass die Regelung sowohl den Interessen der Kinder als auch den rechtlichen Vorgaben entspricht. Ferdinand hat eine Woche Zeit, um einen Vorschlag zu erarbeiten, den er mit seinem Anwalt besprechen kann."}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=False
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
 
generated_ids = model.generate(
    **model_inputs,
    max_length=2024,
    temperature=0.01,
    do_sample=False,
    #bos_token_id=im_start_token_id,
    eos_token_id=im_end_token_id,
    pad_token_id=tokenizer.eos_token_id,
    repetition_penalty=1.1,
    num_return_sequences=1,
    top_k=40,
    top_p=0.95,
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
 
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 

Fine-tuning

We are providing a comprehensive Google Colab notebook to guide users through the process of fine-tuning our model, complete with detailed instructions, essential dependencies, and configurable settings. Colab-Notebook.

Evaluation

The evaluation was performed using seven subsets, focusing on extraction recall, question answering (QA) with multiple references, and time difference reasoning. Relevant context and summarization were treated as distinct subsets, each playing a crucial role in the evaluation process. For relevant context, the model's ability to identify and extract pertinent information from the source material was assessed. In contrast, the summarization subset evaluated the model's capability to generate concise and accurate summaries based on the relevant context.

Four evaluation metrics were employed across all subsets: language quality, overall correctness, instruction following, and an overall score.

  • Language quality: This metric focused on the overall linguistic quality of the outputs, considering factors such as grammar, fluency, and clarity.
  • Overall correctness: The accuracy and correctness of the content were evaluated under this metric.
  • Instruction following: This metric assessed the model's ability to follow specific instructions provided for each task.
  • Overall score: This metric combined the results from the previous three metrics, offering a comprehensive evaluation of the model's capabilities across all subsets.
Metric Vanila-llama-3.1-8B-Instruct GRAG-LLAMA-SFT GRAG-LLAMA-ORPO GRAG-LLAMA-MERGED GPT-3.5-TURBO
Average Language Quality 87.78 88.93 88.93 86.93 87.58
OVERALL SCORES (weighted):
extraction_recall 66.1 73.2 66.3 61.8 66.9
qa_multiple_references 74.7 91.5 90.9 84.8 90.3
qa_without_time_difference 83.5 90.7 91.4 88.0 89.9
qa_with_time_difference 86.7 91.4 91.8 89.1 90.6
relevant_context 87.9 90.3 89.6 84.4 88.5
summarizations 88.6 90.7 82.7 84.9 87.7

Hard Benchmark Eval

GRAG Logo
Metric Vanila-llama-3.1-8B-Instruct [GRAG-LLAMA-ORPO GPT-3.5-TURBO GPT-4o GPT-4o-mini
OVERALL SCORES (weighted):
hard_reasoning_de 39.1 42.5 37.9 62.9 58.4
hard_reasoning_en 54.9 55.6 48.3 61.7 62.9

Merge Details

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

slices:
  - sources:
      - model: avemio/GRAG-LLAMA-3.1-8B-SFT-HESSIAN-AI
        layer_range: [0, 32]
      - model: avemio/GRAG-LLAMA-3.1-8B-ORPO-HESSIAN-AI
        layer_range: [0, 32]
merge_method: slerp
base_model: avemio/GRAG-LLAMA-3.1-8B-ORPO-HESSIAN-AI
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Architecture

Parameter GRAG-LLAMA-MERGED
d_model 3072
num heads 32
num layers 32
MLP ratio 3.5
LayerNorm type RMSNorm
pos embeddings RoPE
attention variant Standard Multi-Head Self Attention
biases none
block type sequential
activation SiLU
sequence length 131072
weight typing bfloat16

Hyperparameters

Parameter GRAG-LLAMA-MERGED
warmup steps 50
peak LR 5.0E-07
weight decay 0.1
LR schedule linear
gradient reduce dtype FP32
optimizer state dtype FP32

Bias, Risks, and Limitations

Like any base language model or fine-tuned model without safety filtering, it is relatively easy for a user to prompt these models to generate harmful and generally sensitive content. Such content can also be produced unintentionally, especially in the case of bias, so we recommend users consider the risks of applications of this technology.

Otherwise, many facts from GRAG-LLAMA-MERGED or any LLM will often not be true, so they should be checked.

Model Card Contact

For errors in this model card, please contact (grag@avemio.digital).

The GRAG AI Team

Marcel Rosiak Soumya Paul Siavash Mollaebrahim Zain ul Haq

Downloads last month
28
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for avemio/GRAG-LLAMA-3.1-8B-MERGED-HESSIAN-AI

Datasets used to train avemio/GRAG-LLAMA-3.1-8B-MERGED-HESSIAN-AI

Collection including avemio/GRAG-LLAMA-3.1-8B-MERGED-HESSIAN-AI