HebEMO - Emotion Recognition Model for Modern Hebrew
HebEMO is a tool that detects polarity and extracts emotions from modern Hebrew User-Generated Content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated.
HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of surprise, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.
Emotion UGC Data Description
Our UGC data includes comments posted on news articles collected from 3 major Israeli news sites, between January 2020 to August 2020. The total size of the data is ~150 MB, including over 7 million words and 350K sentences. ~2000 sentences were annotated by crowd members (3-10 annotators per sentence) for overall sentiment (polarity) and eight emotions: anger, disgust, anticipation , fear, joy, sadness, surprise and trust. The percentage of sentences in which each emotion appeared is found in the table below.
anger | disgust | expectation | fear | happy | sadness | surprise | trust | sentiment | |
---|---|---|---|---|---|---|---|---|---|
ratio | 0.78 | 0.83 | 0.58 | 0.45 | 0.12 | 0.59 | 0.17 | 0.11 | 0.25 |
Performance
Emotion Recognition
emotion | f1-score | precision | recall |
---|---|---|---|
anger | 0.96 | 0.99 | 0.93 |
disgust | 0.97 | 0.98 | 0.96 |
anticipation | 0.82 | 0.80 | 0.87 |
fear | 0.79 | 0.88 | 0.72 |
joy | 0.90 | 0.97 | 0.84 |
sadness | 0.90 | 0.86 | 0.94 |
surprise | 0.40 | 0.44 | 0.37 |
trust | 0.83 | 0.86 | 0.80 |
The above metrics is for positive class (meaning, the emotion is reflected in the text).
Sentiment (Polarity) Analysis
precision | recall | f1-score | |
---|---|---|---|
neutral | 0.83 | 0.56 | 0.67 |
positive | 0.96 | 0.92 | 0.94 |
negative | 0.97 | 0.99 | 0.98 |
accuracy | 0.97 | ||
macro avg | 0.92 | 0.82 | 0.86 |
weighted avg | 0.96 | 0.97 | 0.96 |
Sentiment (polarity) analysis model is also available on AWS! for more information visit AWS' git
How to use
Emotion Recognition Model
An online model can be found at huggingface spaces or as colab notebook
# !pip install pyplutchik==0.0.7
# !pip install transformers==4.14.1
!git clone https://github.com/avichaychriqui/HeBERT.git
from HeBERT.src.HebEMO import *
HebEMO_model = HebEMO()
HebEMO_model.hebemo(input_path = 'data/text_example.txt')
# return analyzed pandas.DataFrame
hebEMO_df = HebEMO_model.hebemo(text='ืืืืื ืืคืื ืืืืืฉืจืื', plot=True)
For sentiment classification model (polarity ONLY):
from transformers import AutoTokenizer, AutoModel, pipeline
tokenizer = AutoTokenizer.from_pretrained("avichr/heBERT_sentiment_analysis") #same as 'avichr/heBERT' tokenizer
model = AutoModel.from_pretrained("avichr/heBERT_sentiment_analysis")
# how to use?
sentiment_analysis = pipeline(
"sentiment-analysis",
model="avichr/heBERT_sentiment_analysis",
tokenizer="avichr/heBERT_sentiment_analysis",
return_all_scores = True
)
sentiment_analysis('ืื ื ืืชืืื ืื ืืืืื ืืืจืืืช ืฆืืจืืื')
>>> [[{'label': 'neutral', 'score': 0.9978172183036804},
>>> {'label': 'positive', 'score': 0.0014792329166084528},
>>> {'label': 'negative', 'score': 0.0007035882445052266}]]
sentiment_analysis('ืงืคื ืื ืืขืื')
>>> [[{'label': 'neutral', 'score': 0.00047328314394690096},
>>> {'label': 'possitive', 'score': 0.9994067549705505},
>>> {'label': 'negetive', 'score': 0.00011996887042187154}]]
sentiment_analysis('ืื ื ืื ืืืื ืืช ืืขืืื')
>>> [[{'label': 'neutral', 'score': 9.214012970915064e-05},
>>> {'label': 'possitive', 'score': 8.876807987689972e-05},
>>> {'label': 'negetive', 'score': 0.9998190999031067}]]
Contact us
Avichay Chriqui
Inbal yahav
The Coller Semitic Languages AI Lab
Thank you, ืชืืื, ุดูุฑุง
If you used this model please cite us as :
Chriqui, A., & Yahav, I. (2022). HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition. INFORMS Journal on Data Science, forthcoming.
@article{chriqui2021hebert,
title={HeBERT \& HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition},
author={Chriqui, Avihay and Yahav, Inbal},
journal={INFORMS Journal on Data Science},
year={2022}
}
- Downloads last month
- 72