Video Moment Retrieval in Practical Setting: A Dataset of Ranked Moments for Imprecise Queries
The benchmark and dataset for the paper Video Moment Retrieval in Practical Settings: A Dataset of Ranked Moments for Imprecise Queries.
We recommend cloning the code, data, and feature files from the Hugging Face repository at TVR-Ranking. This repository only includes the code for ReLoCLNet_RVMR. You can download the other baseline models from XML_RVMR and CONQUER_RVMR.
Getting started
1. Install the requisites
The Python packages we used are listed as follows. Commonly, the most recent versions work well.
conda create --name tvr_ranking python=3.11
conda activate tvr_ranking
pip install pytorch # 2.2.1+cu121
pip install tensorboard
pip install h5py pandas tqdm easydict pyyaml
2. Download full dataset
For the full dataset, please go down from Hugging Face TVR-Ranking.
The detailed introduction and raw annotations is available at Dataset Introduction.
TVR_Ranking/
-val.json
-test.json
-train_top01.json
-train_top20.json
-train_top40.json
-video_corpus.json
3. Download features
For the query BERT features, you can download them from Hugging Face TVR-Ranking.
For the video and subtitle features, please request them at TVR.
tar -xf tvr_feature_release.tar.gz -C data/TVR_Ranking/feature
4. Training
# modify the data path first
sh run_top20.sh
5. Inferring
The checkpoint can all be accessed from Hugging Face TVR-Ranking.
sh infer_top20.sh
Experiment Results
Baseline
The baseline performance of $NDGC@40$ was shown as follows. Top $N$ moments were comprised of a pseudo training set by the query-caption similarity.
Model | Train Set Top N | IoU=0.3 | IoU=0.5 | IoU=0.7 | |||
---|---|---|---|---|---|---|---|
Val | Test | Val | Test | Val | Test | ||
XML | 1 | 0.1077 | 0.1016 | 0.0775 | 0.0727 | 0.0273 | 0.0294 |
20 | 0.2580 | 0.2512 | 0.1874 | 0.1853 | 0.0705 | 0.0753 | |
40 | 0.2408 | 0.2432 | 0.1740 | 0.1791 | 0.0666 | 0.0720 | |
CONQUER | 1 | 0.0952 | 0.0835 | 0.0808 | 0.0687 | 0.0526 | 0.0484 |
20 | 0.2130 | 0.1995 | 0.1976 | 0.1867 | 0.1527 | 0.1368 | |
40 | 0.2183 | 0.1968 | 0.2022 | 0.1851 | 0.1524 | 0.1365 | |
ReLoCLNet | 1 | 0.1533 | 0.1489 | 0.1321 | 0.1304 | 0.0878 | 0.0869 |
20 | 0.4039 | 0.4031 | 0.3656 | 0.3648 | 0.2542 | 0.2567 | |
40 | 0.4725 | 0.4735 | 0.4337 | 0.4337 | 0.3015 | 0.3079 |
ReLoCLNet Performance
Model | Train Set Top N | IoU=0.3 | IoU=0.5 | IoU=0.7 | |||
---|---|---|---|---|---|---|---|
Val | Test | Val | Test | Val | Test | ||
NDCG@10 | |||||||
ReLoCLNet | 1 | 0.1575 | 0.1525 | 0.1358 | 0.1349 | 0.0908 | 0.0916 |
ReLoCLNet | 20 | 0.3751 | 0.3751 | 0.3407 | 0.3397 | 0.2316 | 0.2338 |
ReLoCLNet | 40 | 0.4339 | 0.4353 | 0.3984 | 0.3986 | 0.2693 | 0.2807 |
NDCG@20 | |||||||
ReLoCLNet | 1 | 0.1504 | 0.1439 | 0.1303 | 0.1269 | 0.0866 | 0.0849 |
ReLoCLNet | 20 | 0.3815 | 0.3792 | 0.3462 | 0.3427 | 0.2381 | 0.2386 |
ReLoCLNet | 40 | 0.4418 | 0.4439 | 0.4060 | 0.4059 | 0.2787 | 0.2877 |
NDCG@40 | |||||||
ReLoCLNet | 1 | 0.1533 | 0.1489 | 0.1321 | 0.1304 | 0.0878 | 0.0869 |
ReLoCLNet | 20 | 0.4039 | 0.4031 | 0.3656 | 0.3648 | 0.2542 | 0.2567 |
ReLoCLNet | 40 | 0.4725 | 0.4735 | 0.4337 | 0.4337 | 0.3015 | 0.3079 |
Citation
If you feel this project helpful to your research, please cite our work.