|
import torch |
|
from modules.ReLoCLNet import ReLoCLNet |
|
from modules.optimization import BertAdam |
|
import numpy as np |
|
import copy |
|
|
|
def count_parameters(model, verbose=True): |
|
"""Count number of parameters in PyTorch model, |
|
References: https://discuss.pytorch.org/t/how-do-i-check-the-number-of-parameters-of-a-model/4325/7. |
|
|
|
from utils.utils import count_parameters |
|
count_parameters(model) |
|
import sys |
|
sys.exit(1) |
|
""" |
|
n_all = sum(p.numel() for p in model.parameters()) |
|
n_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
if verbose: |
|
print("Parameter Count: all {:,d}; trainable {:,d}".format(n_all, n_trainable)) |
|
return n_all, n_trainable |
|
|
|
def prepare_model(opt, logger): |
|
model = ReLoCLNet(opt) |
|
count_parameters(model) |
|
if opt.device.type == "cuda": |
|
logger.info("CUDA enabled.") |
|
model.to(opt.device) |
|
return model |
|
|
|
def resume_model(logger, opt, model=None, optimizer=None, start_epoch=None): |
|
checkpoint = torch.load(opt.checkpoint, map_location=opt.device) |
|
if model is not None: |
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
logger.info(f"Loading model from {opt.checkpoint} at epoch {checkpoint['epoch']}") |
|
|
|
if optimizer is not None: |
|
optimizer.load_state_dict(checkpoint['optimizer_state_dict']) |
|
logger.info(f"Loading optimizer from {opt.checkpoint} at epoch {checkpoint['epoch']}") |
|
|
|
if start_epoch is not None: |
|
start_epoch = checkpoint['epoch'] |
|
logger.info(f"Loading start_epoch from {opt.checkpoint} at epoch {checkpoint['epoch']}") |
|
|
|
return model, optimizer, start_epoch, |
|
|
|
def prepare_optimizer(model, opt, total_train_steps): |
|
|
|
param_optimizer = list(model.named_parameters()) |
|
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": 0.01}, |
|
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0}] |
|
|
|
optimizer = BertAdam(optimizer_grouped_parameters, lr=opt.lr, weight_decay=opt.wd, warmup=opt.lr_warmup_proportion, |
|
t_total=total_train_steps, schedule="warmup_linear") |
|
return optimizer |
|
|
|
def save_model(model, optimizer, epoch, path, logger): |
|
data = { |
|
'epoch': epoch, |
|
'model_cfg': model.config, |
|
'model_state_dict': model.state_dict(), |
|
'optimizer_state_dict': optimizer.state_dict(), |
|
} |
|
torch.save(data, path) |
|
logger.info(f"Save checkpoint at {path}") |
|
logger.info("") |
|
|
|
|
|
def topk_3d(tensor, k): |
|
""" |
|
Find the top k values and their corresponding indices in a 3D tensor. |
|
|
|
Args: |
|
tensor (torch.Tensor): A 3D tensor of shape [v, m, n]. |
|
k (int): The number of top elements to find. |
|
|
|
Returns: |
|
topk_values (torch.Tensor): The top k values. |
|
indices_3d (torch.Tensor): The indices of the top k values in the format [i, j, k]. |
|
""" |
|
|
|
flat_tensor = tensor.view(-1) |
|
|
|
|
|
topk_values, topk_indices = torch.topk(flat_tensor, k) |
|
|
|
|
|
v, m, n = tensor.shape |
|
indices_3d = torch.stack(torch.unravel_index(topk_indices, (v, m, n)), dim=1) |
|
|
|
return topk_values, indices_3d |
|
|
|
|
|
def generate_min_max_length_mask(array_shape, min_l, max_l): |
|
""" The last two dimension denotes matrix of upper-triangle with upper-right corner masked, |
|
below is the case for 4x4. |
|
[[0, 1, 1, 0], |
|
[0, 0, 1, 1], |
|
[0, 0, 0, 1], |
|
[0, 0, 0, 0]] |
|
Args: |
|
array_shape: np.shape??? The last two dimensions should be the same |
|
min_l: int, minimum length of predicted span |
|
max_l: int, maximum length of predicted span |
|
Returns: |
|
""" |
|
single_dims = (1, ) * (len(array_shape) - 2) |
|
mask_shape = single_dims + array_shape[-2:] |
|
extra_length_mask_array = np.ones(mask_shape, dtype=np.float32) |
|
mask_triu = np.triu(extra_length_mask_array, k=min_l) |
|
mask_triu_reversed = 1 - np.triu(extra_length_mask_array, k=max_l) |
|
final_prob_mask = mask_triu * mask_triu_reversed |
|
return final_prob_mask |
|
|
|
|
|
def extract_topk_elements(query_scores, start_probs, end_probs, video_names, k): |
|
|
|
|
|
topk_values, topk_indices = torch.topk(query_scores, k) |
|
|
|
|
|
selected_start_probs = torch.stack([start_probs[i, indices] for i, indices in enumerate(topk_indices)], dim=0) |
|
selected_end_probs = torch.stack([end_probs[i, indices] for i, indices in enumerate(topk_indices)], dim=0) |
|
|
|
selected_video_name = [] |
|
for i in range(topk_indices.shape[0]): |
|
vn = copy.deepcopy(video_names) |
|
tmp = [vn[idx] for idx in topk_indices[i]] |
|
selected_video_name.append(tmp) |
|
|
|
return topk_values, selected_start_probs, selected_end_probs, selected_video_name |
|
|
|
def logger_ndcg_iou(val_ndcg_iou, logger, suffix): |
|
for K, vs in val_ndcg_iou.items(): |
|
for T, v in vs.items(): |
|
logger.info(f"{suffix} NDCG@{K}, IoU={T}: {v:.6f}") |
|
logger.info("") |