English
TVR-Ranking / utils /run_utils.py
Liangrj5
correct ndcg-iou
dae63ab
raw
history blame
5.45 kB
import torch
from modules.ReLoCLNet import ReLoCLNet
from modules.optimization import BertAdam
import numpy as np
import copy
def count_parameters(model, verbose=True):
"""Count number of parameters in PyTorch model,
References: https://discuss.pytorch.org/t/how-do-i-check-the-number-of-parameters-of-a-model/4325/7.
from utils.utils import count_parameters
count_parameters(model)
import sys
sys.exit(1)
"""
n_all = sum(p.numel() for p in model.parameters())
n_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
if verbose:
print("Parameter Count: all {:,d}; trainable {:,d}".format(n_all, n_trainable))
return n_all, n_trainable
def prepare_model(opt, logger):
model = ReLoCLNet(opt)
count_parameters(model)
if opt.device.type == "cuda":
logger.info("CUDA enabled.")
model.to(opt.device)
return model
def resume_model(logger, opt, model=None, optimizer=None, start_epoch=None):
checkpoint = torch.load(opt.checkpoint, map_location=opt.device)
if model is not None:
model.load_state_dict(checkpoint['model_state_dict'])
logger.info(f"Loading model from {opt.checkpoint} at epoch {checkpoint['epoch']}")
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
logger.info(f"Loading optimizer from {opt.checkpoint} at epoch {checkpoint['epoch']}")
if start_epoch is not None:
start_epoch = checkpoint['epoch']
logger.info(f"Loading start_epoch from {opt.checkpoint} at epoch {checkpoint['epoch']}")
return model, optimizer, start_epoch,
def prepare_optimizer(model, opt, total_train_steps):
param_optimizer = list(model.named_parameters())
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": 0.01},
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0}]
optimizer = BertAdam(optimizer_grouped_parameters, lr=opt.lr, weight_decay=opt.wd, warmup=opt.lr_warmup_proportion,
t_total=total_train_steps, schedule="warmup_linear")
return optimizer
def save_model(model, optimizer, epoch, path, logger):
data = {
'epoch': epoch,
'model_cfg': model.config,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(data, path)
logger.info(f"Save checkpoint at {path}")
logger.info("")
def topk_3d(tensor, k):
"""
Find the top k values and their corresponding indices in a 3D tensor.
Args:
tensor (torch.Tensor): A 3D tensor of shape [v, m, n].
k (int): The number of top elements to find.
Returns:
topk_values (torch.Tensor): The top k values.
indices_3d (torch.Tensor): The indices of the top k values in the format [i, j, k].
"""
# Step 1: Flatten the tensor to 1D
flat_tensor = tensor.view(-1)
# Step 2: Find the top k values and their indices in the flattened tensor
topk_values, topk_indices = torch.topk(flat_tensor, k)
# Step 3: Convert the flat indices back to the original 3D tensor's indices
v, m, n = tensor.shape
indices_3d = torch.stack(torch.unravel_index(topk_indices, (v, m, n)), dim=1)
return topk_values, indices_3d
def generate_min_max_length_mask(array_shape, min_l, max_l):
""" The last two dimension denotes matrix of upper-triangle with upper-right corner masked,
below is the case for 4x4.
[[0, 1, 1, 0],
[0, 0, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 0]]
Args:
array_shape: np.shape??? The last two dimensions should be the same
min_l: int, minimum length of predicted span
max_l: int, maximum length of predicted span
Returns:
"""
single_dims = (1, ) * (len(array_shape) - 2)
mask_shape = single_dims + array_shape[-2:]
extra_length_mask_array = np.ones(mask_shape, dtype=np.float32) # (1, ..., 1, L, L)
mask_triu = np.triu(extra_length_mask_array, k=min_l)
mask_triu_reversed = 1 - np.triu(extra_length_mask_array, k=max_l)
final_prob_mask = mask_triu * mask_triu_reversed
return final_prob_mask # with valid bit to be 1
def extract_topk_elements(query_scores, start_probs, end_probs, video_names, k):
# Step 1: Find the top k values and their indices in query_scores
topk_values, topk_indices = torch.topk(query_scores, k)
# Step 2: Use these indices to select the corresponding elements from start_probs and end_probs
selected_start_probs = torch.stack([start_probs[i, indices] for i, indices in enumerate(topk_indices)], dim=0)
selected_end_probs = torch.stack([end_probs[i, indices] for i, indices in enumerate(topk_indices)], dim=0)
selected_video_name = []
for i in range(topk_indices.shape[0]):
vn = copy.deepcopy(video_names)
tmp = [vn[idx] for idx in topk_indices[i]]
selected_video_name.append(tmp)
return topk_values, selected_start_probs, selected_end_probs, selected_video_name
def logger_ndcg_iou(val_ndcg_iou, logger, suffix):
for K, vs in val_ndcg_iou.items():
for T, v in vs.items():
logger.info(f"{suffix} NDCG@{K}, IoU={T}: {v:.6f}")
logger.info("")