medsiglip-448-ft-vindr-10ep
This model is a fine-tuned version of google/medsiglip-448 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.6067
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- lr_scheduler_warmup_steps: 300
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 5.0847 | 0.4938 | 100 | 4.0767 |
| 2.9526 | 0.9877 | 200 | 3.9932 |
| 2.9083 | 1.4790 | 300 | 4.1026 |
| 2.8957 | 1.9728 | 400 | 4.1140 |
| 2.8337 | 2.4642 | 500 | 4.0660 |
| 2.8343 | 2.9580 | 600 | 4.1254 |
| 2.7338 | 3.4494 | 700 | 4.0615 |
| 2.7297 | 3.9432 | 800 | 4.0960 |
| 2.6297 | 4.4346 | 900 | 4.0806 |
| 2.6329 | 4.9284 | 1000 | 4.0399 |
| 2.5551 | 5.4198 | 1100 | 4.1729 |
| 2.5151 | 5.9136 | 1200 | 4.1392 |
| 2.4801 | 6.4049 | 1300 | 4.2986 |
| 2.4498 | 6.8988 | 1400 | 4.4359 |
| 2.4056 | 7.3901 | 1500 | 4.4775 |
| 2.4119 | 7.8840 | 1600 | 4.4226 |
| 2.3567 | 8.3753 | 1700 | 4.6271 |
| 2.3579 | 8.8691 | 1800 | 4.5365 |
| 2.3653 | 9.3605 | 1900 | 4.5948 |
| 2.3486 | 9.8543 | 2000 | 4.6067 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 64
Model tree for aysangh/medsiglip-448-ft-vindr-10ep
Base model
google/medsiglip-448