python-gpt2-large-issues-128

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss
1.9843 1.0 1163 1.6715
1.5713 2.0 2326 1.4301
1.4226 3.0 3489 1.3808
1.332 4.0 4652 1.3806
1.2708 5.0 5815 1.2737
1.2089 6.0 6978 1.2354
1.167 7.0 8141 1.2250
1.126 8.0 9304 1.2262
1.0846 9.0 10467 1.1891
1.0647 10.0 11630 1.2263
1.0301 11.0 12793 1.1383
1.0054 12.0 13956 1.0922
0.9714 13.0 15119 1.1141
0.9713 14.0 16282 1.1614
0.9362 15.0 17445 1.0753
0.9382 16.0 18608 1.2286

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.6
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.