metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: xlsr-128upper-sorbian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: hsb
split: validation
args: hsb
metrics:
- name: Wer
type: wer
value: 0.549367088607595
xlsr-128upper-sorbian
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7110
- Wer: 0.5494
- Cer: 0.1188
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
3.8492 | 3.9216 | 100 | 3.9919 | 1.0 | 1.0 |
3.1983 | 7.8431 | 200 | 3.2332 | 1.0 | 1.0 |
2.9601 | 11.7647 | 300 | 3.0166 | 0.9873 | 0.9798 |
0.4618 | 15.6863 | 400 | 0.7749 | 0.7557 | 0.1917 |
0.2411 | 19.6078 | 500 | 0.7812 | 0.7013 | 0.1702 |
0.1112 | 23.5294 | 600 | 0.7275 | 0.6405 | 0.1508 |
0.1108 | 27.4510 | 700 | 0.7995 | 0.6247 | 0.1440 |
0.0432 | 31.3725 | 800 | 0.7902 | 0.6139 | 0.1432 |
0.0431 | 35.2941 | 900 | 0.7615 | 0.5797 | 0.1372 |
0.0515 | 39.2157 | 1000 | 0.7029 | 0.5456 | 0.1234 |
0.0241 | 43.1373 | 1100 | 0.7296 | 0.5285 | 0.1188 |
0.0342 | 47.0588 | 1200 | 0.7110 | 0.5494 | 0.1188 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1