Badr Abdullah
Model save
83d64f2 verified
|
raw
history blame
2.91 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: xlsr-128upper-sorbian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: hsb
          split: validation
          args: hsb
        metrics:
          - name: Wer
            type: wer
            value: 0.549367088607595

Visualize in Weights & Biases

xlsr-128upper-sorbian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7110
  • Wer: 0.5494
  • Cer: 0.1188

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.8492 3.9216 100 3.9919 1.0 1.0
3.1983 7.8431 200 3.2332 1.0 1.0
2.9601 11.7647 300 3.0166 0.9873 0.9798
0.4618 15.6863 400 0.7749 0.7557 0.1917
0.2411 19.6078 500 0.7812 0.7013 0.1702
0.1112 23.5294 600 0.7275 0.6405 0.1508
0.1108 27.4510 700 0.7995 0.6247 0.1440
0.0432 31.3725 800 0.7902 0.6139 0.1432
0.0431 35.2941 900 0.7615 0.5797 0.1372
0.0515 39.2157 1000 0.7029 0.5456 0.1234
0.0241 43.1373 1100 0.7296 0.5285 0.1188
0.0342 47.0588 1200 0.7110 0.5494 0.1188

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1