Badr Abdullah
Model save
cc75278 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: xlsr-128upper-sorbian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: hsb
          split: validation
          args: hsb
        metrics:
          - name: Wer
            type: wer
            value: 0.5044303797468355

Visualize in Weights & Biases

xlsr-128upper-sorbian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7625
  • Wer: 0.5044
  • Cer: 0.1106

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.8489 3.9216 100 4.0479 1.0 1.0
3.1996 7.8431 200 3.2124 0.9804 0.9850
2.3527 11.7647 300 2.4026 1.0 0.6858
0.4424 15.6863 400 0.7917 0.7418 0.1910
0.2617 19.6078 500 0.7624 0.6804 0.1696
0.1421 23.5294 600 0.7839 0.6582 0.1579
0.097 27.4510 700 0.8322 0.6316 0.1495
0.0459 31.3725 800 0.8119 0.6171 0.1446
0.0668 35.2941 900 0.8534 0.6418 0.1535
0.0627 39.2157 1000 0.8256 0.6019 0.1397
0.0454 43.1373 1100 0.7747 0.5994 0.1363
0.04 47.0588 1200 0.8046 0.5810 0.1321
0.0563 50.9804 1300 0.7910 0.5797 0.1325
0.039 54.9020 1400 0.7370 0.5595 0.1265
0.0254 58.8235 1500 0.7395 0.5418 0.1188
0.0211 62.7451 1600 0.7582 0.5430 0.1209
0.0218 66.6667 1700 0.7123 0.5051 0.1121
0.0206 70.5882 1800 0.7912 0.5297 0.1165
0.0155 74.5098 1900 0.7671 0.5367 0.1183
0.0242 78.4314 2000 0.7926 0.5418 0.1170
0.0081 82.3529 2100 0.7817 0.5373 0.1221
0.0087 86.2745 2200 0.7989 0.5285 0.1165
0.0088 90.1961 2300 0.7523 0.5165 0.1141
0.0173 94.1176 2400 0.7646 0.5038 0.1108
0.0217 98.0392 2500 0.7625 0.5044 0.1106

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1