layoutlmv3-finetuned-invoice

This model is a fine-tuned version of microsoft/layoutlmv3-base on the invoices dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2299
  • Precision: 0.975
  • Recall: 0.975
  • F1: 0.975
  • Accuracy: 0.975

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 14.29 100 0.1616 0.975 0.975 0.975 0.975
No log 28.57 200 0.1909 0.975 0.975 0.975 0.975
No log 42.86 300 0.2046 0.975 0.975 0.975 0.975
No log 57.14 400 0.2134 0.975 0.975 0.975 0.975
0.1239 71.43 500 0.2299 0.975 0.975 0.975 0.975
0.1239 85.71 600 0.2309 0.975 0.975 0.975 0.975
0.1239 100.0 700 0.2342 0.975 0.975 0.975 0.975
0.1239 114.29 800 0.2407 0.975 0.975 0.975 0.975
0.1239 128.57 900 0.2428 0.975 0.975 0.975 0.975
0.0007 142.86 1000 0.2449 0.975 0.975 0.975 0.975
0.0007 157.14 1100 0.2465 0.975 0.975 0.975 0.975
0.0007 171.43 1200 0.2488 0.975 0.975 0.975 0.975
0.0007 185.71 1300 0.2515 0.975 0.975 0.975 0.975
0.0007 200.0 1400 0.2525 0.975 0.975 0.975 0.975
0.0004 214.29 1500 0.2540 0.975 0.975 0.975 0.975
0.0004 228.57 1600 0.2557 0.975 0.975 0.975 0.975
0.0004 242.86 1700 0.2564 0.975 0.975 0.975 0.975
0.0004 257.14 1800 0.2570 0.975 0.975 0.975 0.975
0.0004 271.43 1900 0.2573 0.975 0.975 0.975 0.975
0.0003 285.71 2000 0.2574 0.975 0.975 0.975 0.975

Framework versions

  • Transformers 4.23.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using balabis/layoutlmv3-finetuned-invoice 1

Evaluation results