Cheese_xray / README.md
barghavani's picture
End of training
d97d536
metadata
license: apache-2.0
base_model: barghavani/Cheese_xray
tags:
  - generated_from_trainer
datasets:
  - chest-xray-classification
metrics:
  - accuracy
model-index:
  - name: Cheese_xray
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: chest-xray-classification
          type: chest-xray-classification
          config: full
          split: test
          args: full
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8883161512027491

Cheese_xray

This model is a fine-tuned version of barghavani/Cheese_xray on the chest-xray-classification dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2827
  • Accuracy: 0.8883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3993 0.99 63 0.4364 0.7165
0.3454 1.99 127 0.3947 0.7680
0.3327 3.0 191 0.3582 0.8591
0.3329 4.0 255 0.3371 0.8746
0.2992 4.99 318 0.3449 0.8643
0.3289 5.99 382 0.3172 0.8832
0.3309 7.0 446 0.2956 0.8935
0.2875 8.0 510 0.2911 0.8883
0.2764 8.99 573 0.2884 0.9124
0.265 9.88 630 0.2827 0.8883

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0