distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6087
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.007 | 1.0 | 113 | 1.8377 | 0.4 |
1.3132 | 2.0 | 226 | 1.2420 | 0.62 |
1.0222 | 3.0 | 339 | 0.9306 | 0.76 |
0.8859 | 4.0 | 452 | 0.8253 | 0.73 |
0.6842 | 5.0 | 565 | 0.6612 | 0.78 |
0.3738 | 6.0 | 678 | 0.6719 | 0.79 |
0.421 | 7.0 | 791 | 0.6380 | 0.83 |
0.1587 | 8.0 | 904 | 0.5500 | 0.86 |
0.1807 | 9.0 | 1017 | 0.5794 | 0.85 |
0.1573 | 10.0 | 1130 | 0.6087 | 0.85 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 169
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for barto17/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert