metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- common_language
metrics:
- accuracy
model-index:
- name: language-detection-fine-tuned-on-xlm-roberta-base
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: common_language
type: common_language
config: full
split: test
args: full
metrics:
- name: Accuracy
type: accuracy
value: 0.9778634915311085
language-detection-fine-tuned-on-xlm-roberta-base
This model is a fine-tuned version of xlm-roberta-base on the common_language dataset. It achieves the following results on the evaluation set:
- Loss: 0.1527
- Accuracy: 0.9779
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2047 | 1.0 | 22194 | 0.1527 | 0.9779 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3