Text Generation
GGUF
Inference Endpoints
bartowski's picture
Update metadata with huggingface_hub
0fd108a verified
metadata
base_model: amd/AMD-Llama-135m-code
datasets:
  - cerebras/SlimPajama-627B
  - manu/project_gutenberg
license: apache-2.0
pipeline_tag: text-generation
quantized_by: bartowski

Llamacpp imatrix Quantizations of AMD-Llama-135m-code

Using llama.cpp release b3825 for quantization.

Original model: https://huggingface.co/amd/AMD-Llama-135m-code

All quants made using imatrix option with dataset from here

Run them in LM Studio

Prompt format

No prompt format found, check original model page

Download a file (not the whole branch) from below:

Filename Quant type File Size Split Description
AMD-Llama-135m-code-f16.gguf f16 0.27GB false Full F16 weights.
AMD-Llama-135m-code-Q8_0.gguf Q8_0 0.14GB false Extremely high quality, generally unneeded but max available quant.
AMD-Llama-135m-code-Q6_K_L.gguf Q6_K_L 0.12GB false Uses Q8_0 for embed and output weights. Very high quality, near perfect, recommended.
AMD-Llama-135m-code-Q6_K.gguf Q6_K 0.11GB false Very high quality, near perfect, recommended.
AMD-Llama-135m-code-Q5_K_L.gguf Q5_K_L 0.11GB false Uses Q8_0 for embed and output weights. High quality, recommended.
AMD-Llama-135m-code-Q5_K_M.gguf Q5_K_M 0.10GB false High quality, recommended.
AMD-Llama-135m-code-Q5_K_S.gguf Q5_K_S 0.10GB false High quality, recommended.
AMD-Llama-135m-code-Q4_K_L.gguf Q4_K_L 0.10GB false Uses Q8_0 for embed and output weights. Good quality, recommended.
AMD-Llama-135m-code-Q3_K_XL.gguf Q3_K_XL 0.10GB false Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability.
AMD-Llama-135m-code-Q4_K_M.gguf Q4_K_M 0.09GB false Good quality, default size for must use cases, recommended.
AMD-Llama-135m-code-Q4_K_S.gguf Q4_K_S 0.08GB false Slightly lower quality with more space savings, recommended.
AMD-Llama-135m-code-Q4_0_8_8.gguf Q4_0_8_8 0.08GB false Optimized for ARM inference. Requires 'sve' support (see link below).
AMD-Llama-135m-code-Q4_0_4_8.gguf Q4_0_4_8 0.08GB false Optimized for ARM inference. Requires 'i8mm' support (see link below).
AMD-Llama-135m-code-Q4_0_4_4.gguf Q4_0_4_4 0.08GB false Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure.
AMD-Llama-135m-code-Q4_0.gguf Q4_0 0.08GB false Legacy format, generally not worth using over similarly sized formats
AMD-Llama-135m-code-IQ4_XS.gguf IQ4_XS 0.08GB false Decent quality, smaller than Q4_K_S with similar performance, recommended.
AMD-Llama-135m-code-Q3_K_L.gguf Q3_K_L 0.08GB false Lower quality but usable, good for low RAM availability.
AMD-Llama-135m-code-IQ3_M.gguf IQ3_M 0.07GB false Medium-low quality, new method with decent performance comparable to Q3_K_M.

Embed/output weights

Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.

Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using.

Thanks!

Downloading using huggingface-cli

First, make sure you have hugginface-cli installed:

pip install -U "huggingface_hub[cli]"

Then, you can target the specific file you want:

huggingface-cli download bartowski/AMD-Llama-135m-code-GGUF --include "AMD-Llama-135m-code-Q4_K_M.gguf" --local-dir ./

If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:

huggingface-cli download bartowski/AMD-Llama-135m-code-GGUF --include "AMD-Llama-135m-code-Q8_0/*" --local-dir ./

You can either specify a new local-dir (AMD-Llama-135m-code-Q8_0) or download them all in place (./)

Q4_0_X_X

These are NOT for Metal (Apple) offloading, only ARM chips.

If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons on the original pull request

To check which one would work best for your ARM chip, you can check AArch64 SoC features (thanks EloyOn!).

Which file should I choose?

A great write up with charts showing various performances is provided by Artefact2 here

The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.

If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.

If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.

Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.

If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.

If you want to get more into the weeds, you can check out this extremely useful feature chart:

llama.cpp feature matrix

But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.

These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.

The I-quants are not compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.

Credits

Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset

Thank you ZeroWw for the inspiration to experiment with embed/output

Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski